Skip to content

Latest commit

 

History

History
464 lines (405 loc) · 20.9 KB

README.md

File metadata and controls

464 lines (405 loc) · 20.9 KB

MachineLearning

欢迎任何人参与和完善:一个人可以走的很快,但是一群人却可以走的更远

机器学习

模块 章节 类型 负责人(GitHub) QQ
机器学习实战 第 1 章: 机器学习基础 介绍 @毛红动 1306014226
机器学习实战 第 2 章: KNN 近邻算法 分类 @尤永江 279393323
机器学习实战 第 3 章: 决策树 分类 @景涛 844300439
机器学习实战 第 4 章: 朴素贝叶斯 分类 @wnma3mz
@分析
1003324213
244970749
机器学习实战 第 5 章: Logistic回归 分类 @微光同尘 529925688
机器学习实战 第 6 章: SVM 支持向量机 分类 @王德红 934969547
网上组合内容 第 7 章: 集成方法(随机森林和 AdaBoost) 分类 @片刻 529815144
机器学习实战 第 8 章: 回归 回归 @微光同尘 529925688
机器学习实战 第 9 章: 树回归 回归 @微光同尘 529925688
机器学习实战 第 10 章: K-Means 聚类 聚类 @徐昭清 827106588
机器学习实战 第 11 章: 利用 Apriori 算法进行关联分析 频繁项集 @刘海飞 1049498972
机器学习实战 第 12 章: FP-growth 高效发现频繁项集 频繁项集 @程威 842725815
机器学习实战 第 13 章: 利用 PCA 来简化数据 工具 @廖立娟 835670618
机器学习实战 第 14 章: 利用 SVD 来简化数据 工具 @张俊皓 714974242
机器学习实战 第 15 章: 大数据与 MapReduce 工具 空缺 - 有兴趣私聊片刻 842376188
Ml项目实战 第 16 章: 推荐系统 项目 空缺 - 有兴趣私聊片刻 842376188

深度学习(DeepLearning) —— 正在更新迭代

  • 1.) 入门介绍
  • 2.) 代码位置:src/deeplearning/py2.x or py3.x

自然语言处理(NLP)

第一部分 入门介绍

第二部分 机器翻译

第三部分 篇章分析

第四部分 UNIT-语言理解与交互技术

未来规划样子

类目 类型 模块 章节 负责人 QQ
机器学习 基本介绍 机器学习基础 @片刻 529815144
监督学习 分类 KNN 近邻算法 @微光同尘 529925688
决策树 @景涛 844300439
朴素贝叶斯 @wnma3mz
@平淡的天
1003324213
554650680
Logistic回归 @景涛 844300439
SVM 支持向量机 @小王子
@景涛
934969547
844300439
集成方法 @片刻 529815144
随机森林 @片刻 529815144
AdaBoost @片刻 529815144
回归 回归 @微光同尘 529925688
树回归 @微光同尘 529925688
综合 xgboost @小王子 934969547
非监督学习 聚类 K-Means 聚类 @徐昭清 827106588
关联规则 利用 Apriori 算法进行关联分析 @刘海飞 1049498972
频繁项集 FP-growth 高效发现频繁项集 @程威 842725815
降维 利用 PCA 来简化数据 @廖立娟 835670618
利用 SVD 来简化数据 空缺
T-SNE @片刻
@Lisanaaa
529815144
1369342903
模型选择 空缺
预处理 @咸鱼 1034616238
模型融合 @咸鱼 1034616238
深度学习 神经网络 NN @红色石头 1024323838
DNN @红色石头 1024323838
图像识别 CNN @瑶妹
@咸鱼
190442212
1034616238
NLP SOW @片刻 529815144
BOW @片刻 529815144
TF-IDF @片刻 529815144
Word2Vec 原理介绍 @片刻 529815144
RNN 空缺
LSTM 空缺
语音识别 空缺
大数据与MapReduce 大数据与MapReduce 空缺
推荐系统 推荐系统 空缺

项目负责人

Ml 第一期 (2017-02-27)

Ml 第二期 (2017-08-14)

Ml 第三期 (2018-04-16)

项目贡献者

Ml 第一期 (2017-02-27)

Ml 第二期 (2017-08-14)

Ml 第三期 (2018-04-16)

  • 欢迎贡献者不断的追加

加入方式

网站视频

知乎问答-爆炸啦-机器学习该怎么入门?

当然我知道,第一句就会被吐槽,因为科班出身的人,不屑的吐了一口唾沫,说傻X,还评论 Andrew Ng 的视频。。

我还知道还有一部分人,看 Andrew Ng 的视频就是看不懂,那神秘的数学推导,那迷之微笑的英文版的教学,我何尝又不是这样走过来的?? 我的心可能比你们都痛,因为我在网上收藏过上10部《机器学习》相关视频,外加国内本土风格的教程:7月+小象 等等,我都很难去听懂,直到有一天,被一个百度的高级算法分析师推荐说:《机器学习实战》还不错,通俗易懂,你去试试??

我试了试,还好我的Python基础和调试能力还不错,基本上代码都调试过一遍,很多高大上的 "理论+推导",在我眼中变成了几个 "加减乘除+循环",我想这不就是像我这样的程序员想要的入门教程么?

很多程序员说机器学习 TM 太难学了,是的,真 TM 难学,我想最难的是:没有一本像《机器学习实战》那样的作者愿意以程序员 Coding 角度去给大家讲解!!

最近几天,GitHub 涨了 300颗 star,加群的200人, 现在还在不断的增加++,我想大家可能都是感同身受吧!

很多想入门新手就是被忽悠着收藏收藏再收藏,但是最后还是什么都没有学到,也就是"资源收藏家",也许新手要的就是 MachineLearning(机器学习) 学习路线图。没错,我可以给你们的一份,因为我们还通过视频记录下来我们的学习过程。水平当然也有限,不过对于新手入门,绝对没问题,如果你还不会,那算我输!!

视频怎么看?

  1. 理论科班出身-建议去学习 Andrew Ng 的视频(Ng 的视频绝对是权威,这个毋庸置疑)
  2. 编码能力强 - 建议看我们的《机器学习实战-教学版》
  3. 编码能力弱 - 建议看我们的《机器学习实战-讨论版》,不过在看理论的时候,看 教学版-理论部分;讨论版的废话太多,不过在讲解代码的时候是一行一行讲解的;所以,根据自己的需求,自由的组合。

循序渐进大体介绍:机器学习初学者建议 | ApacheCN

干货内容实际操作:MachineLearning(机器学习) 学习路线图

机器学习视频-教学版

AcFun B站
优酷 网易云课堂

kaggle: 机器学习竞赛

深度学习 机器学习 大数据 运维工具
TensorFlow R1.2 中文文档 机器学习实战-教学 Spark 2.2.0和2.0.2 中文文档 Zeppelin 0.7.2 中文文档
Pytorch 0.3 中文文档 Sklearn 0.19 中文文档 Storm 1.1.0和1.0.1 中文文档 Kibana 5.2 中文文档
LightGBM 中文文档 Kudu 1.4.0 中文文档
XGBoost 中文文档 Elasticsearch 5.4 中文文档
Beam 中文文档