-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathExperiment_Effect_Undersampling_ratio.m
115 lines (90 loc) · 4.16 KB
/
Experiment_Effect_Undersampling_ratio.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
% Effect of the Under-Sampling Ratio
%
% This code demonstrates the effect of under-sampling ratio "us" on the
% performance of the algorithm described in "Structure-Based Bayesian
% Sparse Reconstruction, Ahmed A. Quadeer & Tareq Y. Al-Naffouri." and
% compares it with other sparse reconstruction algorithms.
%
% Coded by: Ahmed Abdul Quadeer
% E-mail: ahmedaq@gmail.com
% Last change: Dec. 12, 2012
% OC_Gaussian_seq version 1.0
% Copyright (c) Ahmed Abdul Quadeer, Tareq Y. Al-Naffouri, 2012
clear all;close all;clc
N = 800; % Length of time vector
us = 4:1:15; % Undersampling ratio N/M
s = 8; % Sparsity level or number of impulses in time domain
p = s/N; % Sparsity rate
F = 1/sqrt(N)*exp(-sqrt(-1)*(2*pi)*(0:1:N-1)'*(0:1:N-1)/N); %DFT Matrix
ITER = 5000; % Number of iterations
SNR_dB = 30; % SNR in dB
N0 = 1; % Noice variance
sigma_imp = 10^(SNR_dB/10)*N0; % Sparse signal variance
%Initialization
nmse_l1_ref = zeros(1,length(us));
nmse_fbmp = zeros(1,length(us));
nmse_ocmg = zeros(1,length(us));
nmse_omp_ref = zeros(1,length(us));
for ss = 1:1:length(us)
error_l1_ref = zeros(1,ITER);
error_Schniter = zeros(1,ITER);
error_ocmg = zeros(1,ITER);
error_omp_ref = zeros(1,ITER);
for iter = 1:ITER
%% Constructing the sparse signal
x = zeros(N,1);
impulse_place = randi(N,1,s); %takes s random values out of N
x(impulse_place) = sqrt(sigma_imp/2)*(randn(size(impulse_place)) + 1i*randn(size(impulse_place)));
%% Measured Signal
AA = eye(N);
M = ceil(N/us(ss)); %Number of Measurements
index= 1:M; %Index of measurements
A = AA(index,:);
Psi = A*F; %Measurement matrix
n = sqrt(N0/2)*randn(M,1)+1i*randn(M,1); %Noise vecror
y = Psi*x + n; %Measurement vector
%% L1 norm minimization using CVX (Given b and A, find x_hat such that A*x_hat = b)
cvx_begin
cvx_quiet(true) % For supressing results displayed in command window
variable x_hat(N) complex; % Defining the estimation variable with its length in brackets
epsilon = sqrt(N0*(M+2*sqrt(2*M)));
minimize(norm(x_hat,1)); % Problem Definition
subject to
norm(y-Psi*x_hat,2) <= epsilon;
cvx_end
% Support Refinement
J = BLC_Gaussian(x_hat,y,p,Psi',N0,sigma_imp);
% Amplitude Refinement
x_hat_ref = Refinement_MMSE(J,y,Psi',N0,sigma_imp);
error_l1_ref(iter) = norm(x-x_hat_ref)^2/norm(x)^2;
%% Schniter
sig2s = [0; sigma_imp]; % sparse coefficient variances [off;on]
mus = [0; 0]; % sparse coefficient means [off;on;...;on]
D = 10;
stop = 0;
xmmse_best = fbmpc_fxn_reduced(y, Psi, p, N0, sig2s, mus, D, stop);
error_Schniter(iter) = norm(x-xmmse_best)^2/norm(x)^2;
%% OC Gaussian
x_ocmg = OC_Gaussian_seq(y,Psi,sigma_imp,N0,p,index);
error_ocmg(iter) = norm(x-x_ocmg)^2/norm(x)^2;
%% OMP
sup_omp = greed_omp(y,Psi,N);
% Support Refinement
J_omp = BLC_Gaussian(sup_omp,y,p,Psi',N0,sigma_imp);
% Amplitude Refinement
x_omp_ref = Refinement_MMSE(J_omp,y,Psi',N0,sigma_imp);
error_omp_ref(iter) = norm(x-x_omp_ref)^2/norm(x)^2;
end
nmse_l1_ref(ss) = 10*log10(sum(error_l1_ref)/ITER)
nmse_fbmp(ss) = 10*log10(sum(error_Schniter)/ITER)
nmse_ocmg(ss) = 10*log10(sum(error_ocmg)/ITER)
nmse_omp_ref(ss) = 10*log10(sum(error_omp_ref)/ITER)
end
%% Plot
figure
plot(us,nmse_fbmp,'r-.o',us,nmse_l1_ref,'g:d',...
us,nmse_ocmg,'b-s',...
us,nmse_omp_ref,'k--p','LineWidth',2)
legend('FBMP','CR','OC','OMP')
xlabel('Under-sampling ratio (N/M)')
ylabel('NMSE (dB)')