-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathclustering.m
74 lines (63 loc) · 2.35 KB
/
clustering.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
% clustering - Clustering based on threshold
% Function to construct semi-orthogonal clusters based on threshold
%
% Inputs: indx_gt_thresh = vector consisting of indices greater than
% threshold
% m = Length of sparse signal
%
% Output: J_cluster = Cells consisting of clusters
% cluster_indices = Vector consisting of all indices in the
% clusters arranged according to J_cluster
%
% Coded by: Ahmed Abdul Quadeer
% E-mail: ahmedaq@gmail.com
% Last change: Dec. 18, 2012
% BLC_Gaussian version 1.0
% Copyright (c) Ahmed Abdul Quadeer, Tareq Y. Al-Naffouri, 2012
function [J_cluster,cluster_indices] = clustering(indx_gt_thresh,m)
mmm = 1;
for mm = 1:length(indx_gt_thresh)
b11 = indx_gt_thresh(mm);
b11_new(mmm:1:mmm+4)=mod([b11-2 b11-1 b11 b11+1 b11+2],m);
ind = b11_new == 0;
b11_new(ind) = m;
mmm = mmm+5;
cluster_indices = unique(b11_new);
diff_b11 = [cluster_indices(2:end) 0]-cluster_indices;
end
%Joining the clusters if very close
kk = 1;
len_cluster = 0;
for ss = 1:length(diff_b11)
if (diff_b11(ss) == 1 || diff_b11(ss) == 2 || diff_b11(ss) == 3 || diff_b11(ss) == 4)% || diff_b11(ss) == 5)
len_cluster = len_cluster+1;
else
J_cluster{kk} = cluster_indices(ss-len_cluster:ss);
kk = kk+1;
len_cluster = 0;
end
end
%Joining the first and the last cluster if required
if J_cluster{1}(1) == 1 && J_cluster{end}(end) == m && length(J_cluster{1})~=m
J_cluster{end} = [J_cluster{end} J_cluster{1}];
J_cluster{1} = [];
end
%Removing the empty cells
J_cluster(cellfun(@isempty,J_cluster))=[];
%Making sure that the indices in cluster are from 1 to m
for kk = 1:length(J_cluster)
J_cluster{kk} = mod(J_cluster{kk}(1):1:J_cluster{kk}(1)+length(J_cluster{kk})-1,m);
J_cluster{kk}([J_cluster{kk}] == 0) = m;
end
D = [cellfun('length',J_cluster)].'; %Finding length of each cluster
[~,cluster_max_len] = max(D); %Finding the cluster of max. length
%Swapping the cluster with max. length with the first cluster
dummy = J_cluster{1};
J_cluster{1} = J_cluster{cluster_max_len};
J_cluster{cluster_max_len} = dummy;
%Constructing "cluster_indices"
temp = [];
for kk = 1:length(J_cluster)
temp = [temp J_cluster{kk}];
end
cluster_indices = temp;