-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathSemiSupervised_Release.py
1407 lines (1156 loc) · 50.4 KB
/
SemiSupervised_Release.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import os
from os import listdir
from os.path import isfile, join
from os.path import exists
import sys
import pandas as pd
import random
import numpy as np
import pickle as pkl
from operator import add
from scipy import stats
from scipy.special import logsumexp
from collections import Counter
from matplotlib import pyplot as plt
import copy
import statistics
from itertools import combinations
import sklearn
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report
from sklearn import metrics
from sklearn.metrics import confusion_matrix
from sklearn.model_selection import StratifiedKFold
from sklearn.model_selection import KFold
from sklearn.preprocessing import MinMaxScaler
from sklearn.base import BaseEstimator
from sklearn import tree
from sklearn.neighbors import KNeighborsClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.semi_supervised import SelfTrainingClassifier, LabelPropagation, LabelSpreading
from sklearn.mixture import GaussianMixture
from sklearn.manifold import MDS
from sklearn.metrics import accuracy_score
from sklearn import neighbors
from sklearn.svm import SVC
from scipy import sparse
from scipy.spatial.distance import pdist,squareform
from sklearn.metrics.pairwise import rbf_kernel
from sklearn.linear_model import LogisticRegression as LR
from sklearn.cluster import SpectralClustering,KMeans
from sklearn.linear_model import LinearRegression, Lasso
import SMOTE
from EATT.eatt import EATT
from semisup_learn.methods.qns3vm_old import QN_S3VM
# from safeu.classification.TSVM import TSVM
# from mvlearn.semi_supervised import CTClassifier
import metrices as nmetrics
import matlab.engine as engi
import matlab as mat
import math
from multiprocessing import Pool, cpu_count
from threading import Thread
from multiprocessing import Queue
import warnings
warnings.simplefilter("ignore", category=PendingDeprecationWarning)
warnings.simplefilter("ignore", category=FutureWarning)
warnings.simplefilter("ignore", category=DeprecationWarning)
class ThreadWithReturnValue(Thread):
def __init__(self, group=None, target=None, name=None,
args=(), kwargs={}, Verbose=None):
Thread.__init__(self, group, target, name, args, kwargs)
self._return = None
def run(self):
#print(type(self._target))
if self._target is not None:
self._return = self._target(*self._args,
**self._kwargs)
def join(self, *args):
Thread.join(self, *args)
return self._return
def apply_smote(df):
cols = df.columns
smt = SMOTE.smote(df)
df = smt.run()
df.columns = cols
return df
def load_data(project):
train_df, test_df, success = prepare_data_commit_guru_file(project)#,'process')
return train_df, test_df, success
def prepare_data_commit_guru_file(project):
data_path = 'data/' + project + '.csv'
df = pd.read_csv(data_path)
df.rename(columns = {'Unnamed: 0':'id'},inplace = True)
commits = df.commit_hash
file_data_path = 'data/' + project + '.csv'
commit_data_path = 'data/' + project + '.csv'
release_data_path = 'data/' + project + '_release.pkl'
commit_data_df = pd.read_csv(commit_data_path)
commit_data_df = commit_data_df[['commit_hash','contains_bug','author_date_unix_timestamp']]
commit_data_df['contains_bug'].fillna(False, inplace = True)
commit_data_df["contains_bug"] = commit_data_df["contains_bug"].astype(int)
commit_data_df['created_at'] = pd.to_datetime(commit_data_df.author_date_unix_timestamp,unit='s')
commit_data_df['created_at'] = commit_data_df.created_at.dt.date
commit_data_df = commit_data_df[['commit_hash','created_at','contains_bug']]
data_df = pd.read_csv(file_data_path)
data_df.rename(columns = {'Unnamed: 0':'id'},inplace = True)
data_df = data_df.merge(commit_data_df, on = 'commit_hash')
release_df = pd.read_pickle(release_data_path)
release_df = release_df.sort_values('created_at',ascending=False)
release_df = release_df.reset_index(drop=True)
release_df['created_at'] = pd.to_datetime(release_df.created_at)
release_df['created_at'] = release_df.created_at.dt.date
data_df = data_df.sort_values(by = 'created_at', ascending=True)
data_df = data_df.dropna()
data_df.reset_index(drop= True, inplace = True)
commit_hash = data_df.commit_hash
for col in ['id', 'commit_hash', 'file_name']:
if col in data_df.columns:
data_df = data_df.drop([col], axis = 1)
created_at = data_df.created_at
y = data_df.contains_bug
X = data_df.drop(['contains_bug','created_at'],axis = 1)
cols = X.columns
scaler = MinMaxScaler()
LOC = X['file_la'] + X['file_lt'] - X['file_ld']
X = scaler.fit_transform(X)
X = pd.DataFrame(X, columns = cols)
data_df = X
data_df['Bugs'] = y
data_df['LOC'] = LOC.values.tolist()
data_df['created_at'] = created_at.values.tolist()
data_df['commit_hash'] = commit_hash.values.tolist()
count = 0
last_train_date = None
test_size = 0
test_releases = []
for release_date in release_df.created_at.unique()[:-1]:
test_df = data_df[(data_df.created_at >= release_date)]
if (test_df.shape[0]) > 2 and (test_df.shape[0] > test_size) and (len(test_df.Bugs.unique()) == 2):
count += 1
last_train_date = release_date
test_size = test_df.shape[0]
test_releases.append(release_date)
if count == 4:
# print("breaking")
break
if count < 4:
print('not enough releases')
return data_df,data_df,0
train_df = data_df[data_df.created_at < last_train_date]
test_df = data_df[data_df.created_at >= last_train_date]
test_df = test_df.reset_index(drop= True)
test_df['release'] = [0]*test_df.shape[0]
i = 0
for release_date in test_releases:
test_df.loc[test_df['created_at'] < release_date,'release'] = i
i += 1
train_df = train_df.drop('created_at',axis = 1)
test_df = test_df.drop('created_at',axis = 1)
print('before',train_df.shape)
print('after',train_df.shape)
if train_df.shape[0] == 0:
return data_df, data_df, 0
if test_df.shape[0] == 0:
return data_df, data_df, 0
return train_df, test_df, 1
def create_model(model):
supervised_model_list = {'LR': LogisticRegression(max_iter=10000),
'DT': DecisionTreeClassifier(),
'RF': RandomForestClassifier(n_estimators = 30),
'GNB': GaussianNB(),
'SVM': SVC(probability=True),
'KNN': KNeighborsClassifier()}
return supervised_model_list[model]
'''
Supervised Model
'''
def supervised_models(model, X_train, y_train):
clf = model
clf.fit(X_train, y_train)
return clf
'''
Self Training
'''
def self_training(clf, X_train, y_train):
self_training_model = SelfTrainingClassifier(clf)
self_training_model.fit(X_train, y_train)
return self_training_model
'''
Label Propagation
'''
def label_propagation(X_train, y_train):
label_prop_model = LabelPropagation(max_iter=10000)
label_prop_model.fit(X_train, y_train)
return label_prop_model
'''
Label Spreading
'''
def label_spreading(X_train, y_train):
label_spread_model = LabelSpreading(max_iter=10000)
label_spread_model.fit(X_train, y_train)
return label_spread_model
'''
LapSVMp
'''
def lapSvmp(X_train_mixedlabeled, y_train_mixedlabeled, X_test,y_test):
eng = engi.start_matlab()
eng.addpath(r'lapsvmp/',nargout=0)
X_train_mixedlabeled = pd.concat([X_train_mixedlabeled,X_test], axis = 0)
y_train_mixedlabeled = pd.concat([y_train_mixedlabeled,y_test], axis = 0)
y_train_mixedlabeled = y_train_mixedlabeled.replace({0:-1, -1:0})
X_train_mixedlabeled.reset_index(inplace=True, drop=True)
y_train_mixedlabeled.reset_index(inplace=True, drop=True)
mat_X = mat.double(X_train_mixedlabeled.values.tolist())
mat_y = mat.double(y_train_mixedlabeled.values.tolist())
k = eng.run_code(mat_X, mat_y, nargout=1)
k_a = np.asarray(k)
k_a.flatten()
predicted = pd.Series(k_a.flatten())
predicted = predicted.astype(int)
predicted = predicted.replace({-1:0})
predicted = predicted.tail(X_test.shape[0])
return predicted
'''
Semi Supervised GMM
'''
def semi_GMM(X_train,y_train,X_train_labeled,y_train_labeled):
gm = GaussianMixture(n_components=2, random_state=0).fit(X_train)
train_predict = gm.predict(X_train_labeled)
x_train_df = copy.deepcopy(X_train_labeled)
x_train_df['y_predict'] = train_predict
x_train_df['y_actual'] = y_train_labeled
actual_defect = x_train_df[x_train_df['y_actual'] == 1]
defect_labe_percentagel = actual_defect[actual_defect['y_predict'] == 1].shape[0]/actual_defect.shape[0]
if defect_labe_percentagel > 0.5:
label = {1:1,0:0}
else:
label = {1:0,0:1}
return gm, label
def semi_GMM_predict(gm, label, X_test):
predicted = gm.predict(X_test)
updated_predicted = []
for y_hat in predicted:
if y_hat == 1:
updated_predicted.append(label[1])
else:
updated_predicted.append(label[0])
return updated_predicted
'''
Co-Training
'''
def cotraining_single_view(X_train,y_train, estimator1, estimator2):
l_train = []
for i in y_train.index:
y = y_train.loc[i]
if y == -1:
y_train.loc[i] = np.nan
ctc = CTClassifier(estimator1, estimator2, random_state=23)
ctc = ctc.fit([X_train,X_train], y_train)
return ctc
def cotraining_multi_view(X_train,y_train, estimator1, estimator2):
l_train = []
for i in y_train.index:
y = y_train.loc[i]
if y == -1:
y_train.loc[i] = np.nan
ctc = CTClassifier(estimator1, estimator2, random_state=23)
view_1 = random.sample(X_train.columns.tolist(), 15)
view_2 = random.sample(X_train.columns.tolist(), 15)
ctc = ctc.fit([X_train[view_1], X_train[view_2]], y_train)
return ctc, view_1, view_2
'''
Effort-Aware tri-Training
'''
def tri_training(X_train, y_train, effort):
tt =EATT()
tt.fit(X_train, y_train, effort)
return tt
'''
FTcF.MDS
'''
def get_best_d(labeled_df):
labeled_y = labeled_df.Bugs
labeled_X = labeled_df.drop(['Bugs'], axis = 1)
X_train, X_test, y_train, y_test = train_test_split(labeled_X, labeled_y, test_size=0.33, random_state=42)
scores = {}
for i in range(1, labeled_df.shape[1]-1):
embedding = MDS(n_components=i)
MDS_X = embedding.fit_transform(X_train)
clf = RandomForestClassifier()
clf.fit(MDS_X, y_train)
MDS_X_test = embedding.fit_transform(X_test)
predicted = clf.predict(MDS_X_test)
degree_of_freedom = np.cov(y_test,predicted)[0][1]/statistics.variance(labeled_y)
GCV = sum((y_test - predicted))**2/(1-degree_of_freedom)**2
scores[i] = GCV
return scores
def FTcF_MDS(labeled_df, unlabeled_df, d):
updated_labeled_df = copy.deepcopy(labeled_df)
temp_df = copy.deepcopy(unlabeled_df)
updated_labeled_df.reset_index(drop = True, inplace = True)
temp_df.reset_index(drop = True, inplace = True)
embedding = MDS(n_components=d)
updated_labeled_y = updated_labeled_df.Bugs
updated_labeled_X = updated_labeled_df.drop(['Bugs'], axis = 1)
updated_labeled_X = embedding.fit_transform(updated_labeled_X)
updated_labeled_df = pd.DataFrame(updated_labeled_X)
updated_labeled_df['Bugs'] = updated_labeled_y
temp_df_y = temp_df.Bugs
temp_df_X = temp_df.drop(['Bugs'], axis = 1)
temp_df_X = embedding.fit_transform(temp_df_X)
temp_df = pd.DataFrame(temp_df_X)
temp_df['Bugs'] = temp_df_y
num_try = 0
while(temp_df.shape[0] > 0):
train_y = updated_labeled_df.Bugs
train_X = updated_labeled_df.drop(['Bugs'], axis = 1)
unlabeled_X = temp_df.drop(['Bugs'], axis = 1)
clf = RandomForestClassifier()
clf.fit(train_X, train_y)
predicted_prob = clf.predict_proba(unlabeled_X)
predicted = clf.predict(unlabeled_X)
PCE = [max(prob) for prob in predicted_prob]
unlabeled_X['PCE'] = PCE
unlabeled_X['Bugs'] = predicted
unlabeled_X = unlabeled_X.sort_values('PCE',ascending=False)
pseudo_labeled_df = unlabeled_X[unlabeled_X['PCE'] >= 0.9]
pseudo_labeled_df = pseudo_labeled_df.drop(['PCE'], axis = 1)
updated_labeled_df = pd.concat([updated_labeled_df,pseudo_labeled_df])
temp_df = unlabeled_X[unlabeled_X['PCE'] < 0.90]
temp_df = temp_df.drop(['PCE'], axis = 1)
num_try += 1
if num_try >= 30:
break
return clf, embedding
'''
Co Forest
'''
def resampleWithWeights(data):
data = data.sample(frac = 1)
data.reset_index(inplace = True, drop = True)
weights = [1]*data.shape[0]
for i in range(data.shape[0]):
weights[i] = data.loc[i,'weight']
probabilities = [0]*data.shape[0]
sumProbs = 0
sumOfWeights = sum(weights)
for i in range(data.shape[0]):
sumProbs += round(random.random(),2)
probabilities[i] = sumProbs
newData = pd.DataFrame([], columns = data.columns)
l = 0
k = 0
sumProbs = 0
while((k < data.shape[0]) and (l < data.shape[0])):
if (weights[l] < 0):
print('Error:')
sumProbs += weights[l]
while ((k < data.shape[0]) and (probabilities[k] <= sumProbs)):
newData = newData.append(data.iloc[l])
newData.loc[l,'weight'] = 1
k += 1
l += 1
newData = newData.drop_duplicates()
return newData
def measureError(clf, data, i, m_threshold):
sub_df_sum, weights, test_y = get_confidence(clf, data, i)
confidence = sub_df_sum#[(sub_df_sum <= (1-m_threshold)) | (sub_df_sum >= m_threshold)]
selected_instances = confidence.index
count = weights[selected_instances].sum()
predicted = pd.Series(round(confidence))
error_df = pd.DataFrame([], columns = ['predicted','actual','weights'])
error_df['predicted'] = predicted
error_df['actual'] = test_y[selected_instances]
error_df['weights'] = weights[selected_instances]
error_df = error_df[error_df['predicted'] != error_df['actual']]
err = error_df['weights'].sum()
print("Error",err/count)
return err/count
def get_confidence(clf, data, i):
_clf = clf.estimators_[i]
test_y = data.Bugs
weights = data.weight
test_X = data.drop(['Bugs','weight'], axis = 1)
all_prediction = []
for _clf in clf.estimators_:
all_prediction.append(_clf.predict(test_X))
all_prediction_df = pd.DataFrame(all_prediction)
sub_df = all_prediction_df.drop(i, axis = 0)
sub_df_sum = sub_df.sum()/sub_df.shape[0]
return sub_df_sum, weights, test_y
def coforest(labeled_df, unlabeled_df, val_df):
labeled_data = copy.deepcopy(labeled_df)
unlabeled_data = copy.deepcopy(unlabeled_df)
val_data = copy.deepcopy(val_df)
labeled_data['weight'] = [1]*labeled_data.shape[0]
unlabeled_data['weight'] = [0.5]*unlabeled_data.shape[0]
val_data['weight'] = [1]*val_data.shape[0]
labeled_data.reset_index(drop = True, inplace = True)
unlabeled_data.reset_index(drop = True, inplace = True)
val_data.reset_index(drop = True, inplace = True)
n_classifier = 30
m_threshold = 0.75
err = [0]*n_classifier
err_prime = [0.5]*n_classifier
s_prime = [0]*n_classifier
labeleds = [0]*n_classifier
clf = RandomForestClassifier(n_estimators = n_classifier, max_features = 'log2')
train_y = labeled_data.Bugs
weights = labeled_data.weight
train_X = labeled_data.drop(['Bugs','weight'], axis = 1)
clf.fit(train_X,train_y)
for i in range(n_classifier):
labeleds[i] = resampleWithWeights(labeled_data)
_clf = clf.estimators_[i]
new_train_y = labeleds[i].Bugs
new_train_X = labeleds[i].drop(['Bugs','weight'], axis = 1)
_clf.fit(new_train_X,new_train_y)
unlabeled_X = unlabeled_data.drop(['Bugs', 'weight'], axis = 1)
probs = clf.predict_proba(unlabeled_X)
confidence = []
for prob in probs:
if prob[1] < 0.5:
confidence.append(1-prob[1])
else:
confidence.append(prob[1])
unlabeled_data['weight'] = confidence
bChanged = True
Li = [pd.DataFrame()]*n_classifier
while(bChanged):
bChanged = False
bUpdate = [False]*n_classifier
m_classifiers = []*n_classifier
Li = [pd.DataFrame()]*n_classifier
for i in range(n_classifier):
err[i] = measureError(clf, val_data, i, m_threshold)
if(err[i] <= err_prime[i]):
if(s_prime[i] == 0):
s_prime[i] = min(unlabeled_data.weight.sum() / 10, 100)
weight = 0
unlabeled_data = unlabeled_data.sample(frac = 1)
numWeightsAfterSubsample = round(((err_prime[i] * s_prime[i]) / (err[i]+0.0001) - 1))
temp_df = pd.DataFrame()
for k in range(unlabeled_data.shape[0]):
weight += unlabeled_data.loc[k,'weight']
if (weight > numWeightsAfterSubsample):
break
temp_df = pd.concat([temp_df,unlabeled_data.iloc[k]], axis = 1)
temp_df = temp_df.T
sub_df_sum,_,_ = get_confidence(clf, temp_df, i)
confidence = sub_df_sum[(sub_df_sum <= (1-m_threshold)) | (sub_df_sum >= m_threshold)]
predicted = pd.Series(round(confidence))
predicted.reset_index(drop = True, inplace = True)
selected_instances = confidence.index
temp_df = temp_df.iloc[selected_instances]
temp_df.reset_index(drop = True, inplace = True)
temp_df['Bugs'] = predicted
Li[i] = pd.concat([Li[i],temp_df], axis = 0)
Li[i].drop_duplicates(inplace = True)
if s_prime[i] < Li[i].shape[0]:
if (err[i] * Li[i].weight.sum()) < (err_prime[i] * s_prime[i]):
bUpdate[i] = True
for i in range(n_classifier):
if bUpdate[i] == True:
size = Li[i].weight.sum() #min(Li[i].weight.sum()/10, 100)
bChanged = True
_clf = clf.estimators_[i]
labeled_train_y = labeleds[i].Bugs
labeled_weights = labeleds[i].weight
labeled_train_X = labeleds[i].drop(['Bugs','weight'], axis = 1)
unlabeled_train_y = Li[i].Bugs
unlabeled_weights = Li[i].weight
unlabeled_train_X = Li[i].drop(['Bugs','weight'], axis = 1)
pseudo_train_X = pd.concat([labeled_train_X, unlabeled_train_X], axis = 0)
pseudo_train_y = pd.concat([labeled_train_y, unlabeled_train_y], axis = 0)
pseudo_weights = pd.concat([labeled_weights, unlabeled_weights], axis = 0)
_clf.fit(train_X, train_y, sample_weight = weights)
err_prime[i] = err[i]
s_prime[i] = size
return clf
'''
Semi Booste
'''
def semiBooste(X_train_mixedlabeled, y_train_mixedlabeled, clf):
boost_clf = SemiBoostClassifier(base_model = clf)
_X = X_train_mixedlabeled.reset_index(drop = True, inplace = False)
_y = y_train_mixedlabeled.reset_index(drop = True, inplace = False)
boost_clf.fit(_X, _y)
return boost_clf
class SemiBoostClassifier():
def __init__(self, base_model = SVC()):
self.BaseModel = base_model
def fit(self, X, y,
n_neighbors=4, n_jobs = 1,
max_models = 25,
sample_percent = 0.5,
sigma_percentile = 90,
labels = [1.0,0.0],
similarity_kernel = 'rbf',
verbose = True):
''' Fit model'''
# Localize labeled data
idx_label = np.array(y[y != -1.0].index)
idx_not_label = np.array(y[y == -1.0].index)
# The parameter C is defined in the paper as
C = idx_label.shape[0]/idx_not_label.shape[0]
# First we need to create the similarity matrix
if similarity_kernel == 'knn':
self.S = neighbors.kneighbors_graph(X,
n_neighbors=n_neighbors,
mode='distance',
include_self=True,
n_jobs=n_jobs)
self.S = sparse.csr_matrix(self.S)
elif similarity_kernel == 'rbf':
# First aprox
self.S = np.sqrt(rbf_kernel(X, gamma = 1))
# set gamma parameter as the 15th percentile
sigma = np.percentile(np.log(self.S), sigma_percentile)
sigma_2 = (1/sigma**2)*np.ones((self.S.shape[0],self.S.shape[0]))
self.S = np.power(self.S, sigma_2)
# Matrix to sparse
self.S = sparse.csr_matrix(self.S)
else:
print('No kernel type ', similarity_kernel)
self.models = []
self.weights = []
H = np.zeros(idx_not_label.shape[0])
# Loop for adding sequential models
for t in range(max_models):
try:
p_1 = np.einsum('ij,j', self.S[:,idx_label].todense(), (y[idx_label]==1.0))[idx_not_label]*np.exp(-2*H)
p_2 = np.einsum('ij,j', self.S[:,idx_not_label].todense(), np.exp(H))[idx_not_label]*np.exp(-H)
p = np.add(p_1, p_2)
p = np.squeeze(np.asarray(p))
q_1 = np.einsum('ij,j', self.S[:,idx_label].todense(), (y[idx_label]==0.0))[idx_not_label]*np.exp(2*H)
q_2 = np.einsum('ij,j', self.S[:,idx_not_label].todense(), np.exp(-H))[idx_not_label]*np.exp(H)
q = np.add(q_1, q_2)
q = np.squeeze(np.asarray(q))
z = np.sign(p-q)
z[z==-1.0] = 0
z_conf = np.abs(p-q)
sample_weights = z_conf/np.sum(z_conf)
if np.any(sample_weights != 0):
idx_aux = np.random.choice(np.arange(len(z)),
size = int(sample_percent*len(idx_not_label)),
p = sample_weights,
replace = False)
idx_sample = idx_not_label[idx_aux]
else:
print('No similar unlabeled observations left.')
break
idx_total_sample = np.concatenate([idx_label,idx_sample])
X_t = X.loc[idx_total_sample,]
y.loc[idx_sample] = z[idx_aux]
y_t = y.loc[idx_total_sample]
clf = self.BaseModel
clf.fit(X_t, y_t)
h = clf.predict(X.loc[idx_not_label])
idx_label = idx_total_sample
idx_not_label = np.array(y[y == -1.0].index)
if verbose:
print('There are still ', idx_not_label.shape[0], ' unlabeled observations')
e = (np.dot(p,h==-1) + np.dot(q,h==1))/(np.sum(np.add(p,q)))
a = 0.25*np.log((1-e)/e)
if a<0:
if verbose:
print('Problematic convergence of the model. a<0')
break
self.models.append(clf)
self.weights.append(a)
H = np.zeros(len(idx_not_label))
w = np.sum(self.weights)
for i in range(len(self.models)):
H = np.add(H, self.weights[i]*self.models[i].predict(X.loc[idx_not_label]))
if (t==max_models) & verbose:
print('Maximum number of models reached')
if len(idx_not_label) == 0:
if verbose:
print('All observations have been labeled')
print('Number of iterations: ',t + 1)
break
except:
break
if verbose:
print('\n The model weights are \n')
print(self.weights)
def predict(self, X):
estimate = np.zeros(X.shape[0])
w = np.sum(self.weights)
for i in range(len(self.models)):
estimate = np.add(estimate, self.weights[i]*self.models[i].predict(X))
estimate = np.array(list(map(lambda x: 1.0 if x>0 else 0.0, estimate)))
estimate = estimate.astype(int)
return estimate
'''
S3VM
'''
def S3VM(X_train_mixedlabeled, y_train_mixedlabeled):
clf = SKTSVM()
_X = copy.deepcopy(X_train_mixedlabeled)
_y = copy.deepcopy(y_train_mixedlabeled)
_X.reset_index(inplace=True, drop = True)
_y.reset_index(inplace=True, drop = True)
clf.fit(_X, _y)
return clf
class SKTSVM(BaseEstimator):
"""
Scikit-learn wrapper for transductive SVM (SKTSVM)
Wraps QN-S3VM by Fabian Gieseke, Antti Airola, Tapio Pahikkala, Oliver Kramer (see http://www.fabiangieseke.de/index.php/code/qns3vm)
as a scikit-learn BaseEstimator, and provides probability estimates using Platt scaling
Parameters
----------
C : float, optional (default=1.0)
Penalty parameter C of the error term.
kernel : string, optional (default='rbf')
Specifies the kernel type to be used in the algorithm.
It must be 'linear' or 'rbf'
gamma : float, optional (default=0.0)
Kernel coefficient for 'rbf'
lamU: float, optional (default=1.0)
cost parameter that determines influence of unlabeled patterns
must be float >0
probability: boolean, optional (default=False)
Whether to enable probability estimates. This must be enabled prior
to calling `fit`, and will slow down that method.
"""
# lamU -- cost parameter that determines influence of unlabeled patterns (default 1, must be float > 0)
def __init__(self, kernel = 'RBF', C = 1e-4, gamma = 0.5, lamU = 1.0, probability=True):
self.random_generator = random.Random()
self.kernel = kernel
self.C = C
self.gamma = gamma
self.lamU = lamU
self.probability = probability
def fit(self, X, y): # -1 for unlabeled
"""Fit the model according to the given training data.
Parameters
----------
X : array-like, shape = [n_samples, n_features]
Training vector, where n_samples in the number of samples and
n_features is the number of features.
y : array-like, shape = [n_samples]
Target vector relative to X
Must be 0 or 1 for labeled and -1 for unlabeled instances
Returns
-------
self : object
Returns self.
"""
# http://www.fabiangieseke.de/index.php/code/qns3vm
unlabeled_idx = y[y == -1.0].index
labeled_idx = y[y != -1.0].index
unlabeledX = X.loc[unlabeled_idx].values.tolist()
labeledX = X.loc[labeled_idx].values.tolist()
labeledy = y.loc[labeled_idx]
# convert class 0 to -1 for tsvm
labeledy[labeledy == 0] = -1
labeledy = labeledy.tolist()
if 'rbf' in self.kernel.lower():
self.model = QN_S3VM(labeledX, labeledy, unlabeledX, self.random_generator, lam=self.C, lamU=self.lamU, kernel_type="RBF", sigma=self.gamma)
else:
self.model = QN_S3VM(labeledX, labeledy, unlabeledX, self.random_generator, lam=self.C, lamU=self.lamU)
self.model.train()
# probabilities by Platt scaling
if self.probability:
self.plattlr = LR()
preds = self.model.mygetPreds(labeledX)
self.plattlr.fit( preds.reshape( -1, 1 ), labeledy )
def predict_proba(self, X):
"""Compute probabilities of possible outcomes for samples in X.
The model need to have probability information computed at training
time: fit with attribute `probability` set to True.
Parameters
----------
X : array-like, shape = [n_samples, n_features]
Returns
-------
T : array-like, shape = [n_samples, n_classes]
Returns the probability of the sample for each class in
the model. The columns correspond to the classes in sorted
order, as they appear in the attribute `classes_`.
"""
if self.probability:
preds = self.model.mygetPreds(X.tolist())
return self.plattlr.predict_proba(preds.reshape( -1, 1 ))
else:
raise RuntimeError("Probabilities were not calculated for this model - make sure you pass probability=True to the constructor")
def predict(self, X):
"""Perform classification on samples in X.
Parameters
----------
X : array-like, shape = [n_samples, n_features]
Returns
-------
y_pred : array, shape = [n_samples]
Class labels for samples in X.
"""
y = np.array(self.model.getPredictions(X.values.tolist()))
y[y == -1] = 0
return y
def score(self, X, y, sample_weight=None):
return sklearn.metrics.accuracy_score(y, self.predict(X), sample_weight=sample_weight)
'''
LapSVMp
'''
def lapSvmp(X_train_mixedlabeled, y_train_mixedlabeled, X_test,y_test):
eng = engi.start_matlab()
eng.addpath(r'lapsvmp_v02/',nargout=0)
X_train_mixedlabeled = pd.concat([X_train_mixedlabeled,X_test], axis = 0)
y_train_mixedlabeled = pd.concat([y_train_mixedlabeled,y_test], axis = 0)
y_train_mixedlabeled = y_train_mixedlabeled.replace({0:-1, -1:0})
X_train_mixedlabeled.reset_index(inplace=True, drop=True)
y_train_mixedlabeled.reset_index(inplace=True, drop=True)
mat_X = mat.double(X_train_mixedlabeled.values.tolist())
mat_y = mat.double(y_train_mixedlabeled.values.tolist())
k = eng.run_code(mat_X, mat_y, nargout=1)
k_a = np.asarray(k)
k_a.flatten()
predicted = pd.Series(k_a.flatten())
predicted = predicted.astype(int)
predicted = predicted.replace({-1:0})
predicted = predicted.tail(X_test.shape[0])
return predicted
'''
get_data
'''
def get_data(train_df,X_test,y_test, loc_data, percentage):
training_size = train_df.shape[0]
frac = percentage/100
labeled_data_size = int(training_size*frac)
y_train_supervised = train_df.Bugs
X_train_supervised = train_df.drop(['Bugs'], axis = 1)
train_df_bugs = train_df[train_df['Bugs'] == 1]
train_df_non_bugs = train_df[train_df['Bugs'] != 1]
train_df_bugs.reset_index(drop = True, inplace = True)
train_df_non_bugs.reset_index(drop = True, inplace = True)
final_train_df = pd.DataFrame()
for i in range(train_df_bugs.shape[0]):
if i <= int(labeled_data_size/2):
train_df_bugs.loc[i,'Bugs'] = train_df_bugs.loc[i,'Bugs']
else:
train_df_bugs.loc[i,'Bugs'] = -1
for i in range(train_df_non_bugs.shape[0]):
if i <= int(labeled_data_size/2):
train_df_non_bugs.loc[i,'Bugs'] = train_df_non_bugs.loc[i,'Bugs']
else:
train_df_non_bugs.loc[i,'Bugs'] = -1
final_train_df = copy.deepcopy(train_df_bugs)
final_train_df = pd.concat([final_train_df, train_df_non_bugs], axis = 0)
train_df = final_train_df
unlabeled_y = train_df.Bugs.values.tolist()
train_df = train_df.drop(['LOC','commit_hash'], axis = 1)
mixed_train_df = copy.deepcopy(train_df)
mixed_train_df['Bugs'] = unlabeled_y
labeled_df = mixed_train_df[mixed_train_df['Bugs'] != -1]
unlabeled_df = mixed_train_df[mixed_train_df['Bugs'] == -1]
y_train_unlabeled = unlabeled_df.Bugs
X_train_unlabeled = unlabeled_df.drop(['Bugs'], axis = 1)
y_train_labeled = labeled_df.Bugs
X_train_labeled = labeled_df.drop(['Bugs'], axis = 1)
X_train, X_val, y_train, y_val = train_test_split(X_train_labeled, y_train_labeled, test_size=0.20, random_state=42)
val_df = copy.deepcopy(X_val)
val_df['Bugs'] = y_val
X_train_labeled = copy.deepcopy(X_train)
y_train_labeled = copy.deepcopy(y_train)
labeled_df = copy.deepcopy(X_train_labeled)
labeled_df['Bugs'] = y_train_labeled
labeled_df = apply_smote(labeled_df)
labeled_df['Bugs'] = labeled_df.Bugs.astype(int)
y_train_labeled = labeled_df.Bugs
X_train_labeled = labeled_df.drop(['Bugs'], axis = 1)
# print('after', X_train_labeled.shape)
X_train_mixedlabeled = pd.concat([X_train_labeled,X_train_unlabeled], axis = 0)
y_train_mixedlabeled = pd.concat([y_train_labeled,y_train_unlabeled], axis = 0)
X_train_mixedlabeled.reset_index(inplace=True, drop = True)
y_train_mixedlabeled.reset_index(inplace=True, drop = True)
effort = ((X_train_mixedlabeled['file_ld']+X_train_mixedlabeled['file_la'])*X_train_mixedlabeled['file_lt']*1).values/2 + 1
return [X_train_mixedlabeled, y_train_mixedlabeled, X_train_labeled, y_train_labeled, X_test, y_test, X_val, y_val, labeled_df, unlabeled_df, effort, loc_data, X_train_supervised, y_train_supervised]
'''
run classifier
'''
def compile_results(y_test, predicted, loc, results, _error):
y_test = y_test.values.tolist()
if _error:
results['f1'].append(0)
results['precision'].append(0)
results['recall'].append(0)
results['g-score'].append(0)
results['d2h'].append(0)
results['pci_20'].append(0)
results['ifa'].append(0)
results['pd'].append(0)
results['pf'].append(0)
return results
abcd = nmetrics.measures(y_test,predicted,loc)
try:
results['f1'].append(abcd.calculate_f1_score())
except Exception as e:
print(e)
results['f1'].append(0)
try:
results['precision'].append(abcd.calculate_precision())