forked from fvmassoli/trj-based-adversarials-detection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathextract_feat_eval_class_representatives_vggface2.py
104 lines (79 loc) · 4.27 KB
/
extract_feat_eval_class_representatives_vggface2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
import os
import cv2
import h5py
import argparse
import numpy as np
from tqdm import tqdm
from PIL import Image
import torch
import torch.nn.functional as F
from torch.utils.data import DataLoader
from torch.utils.data.dataset import Dataset
from utils import load_model, get_transforms, TinyDataset
def extract_features(args):
device = 'cuda' if torch.cuda.is_available() else 'cpu'
model = load_model(base_model_path=args.base_model_path, model_checkpoint=args.model_checkpoint, device=device)
out_folder = args.features_folder
if not os.path.exists(out_folder):
os.makedirs(out_folder)
for n_ in tqdm(os.listdir(args.dataset_path), total=len(os.listdir(args.dataset_path)), desc='Extracting features'):
dataloader = DataLoader(dataset=TinyDataset(root=os.path.join(args.dataset_path, n_),
transform=get_transforms()),
batch_size=args.batch_size,
pin_memory=torch.cuda.is_available(),
num_workers=8)
nb_images = len(dataloader.dataset)
n_processed = 0
with torch.no_grad():
ff = h5py.File(os.path.join(out_folder, n_+'.h5'))
for x in dataloader:
out = model(x.to(device))
for k in out.keys():
extracted = out[k]
if k != 'avg_pool' and k != 'classifier' and extracted.ndimension() > 2:
extracted = F.avg_pool2d(out[k], out[k].shape[-2:]).squeeze(3).squeeze(2)
batch_size, feature_dims = extracted.shape
if batch_size != out[k].shape[0]: print('error', batch_size, out[k].shape)
dset = ff.require_dataset(k, (nb_images, feature_dims), dtype='float32', chunks=(50, feature_dims))
dset[n_processed:n_processed + batch_size, :] = extracted.to('cpu')
n_processed += batch_size
ff.close()
del dataset
del dataloader
def compute_class_representatives(args):
features_files = [i for i in os.listdir(args.features_folder) if i.endswith('.h5')]
features_files.sort()
features_files = [os.path.join(args.features_folder, i) for i in features_files]
with h5py.File(features_files[0], 'r') as features:
layer_names = sorted(features.keys())
class_centroids = []
for class_features in tqdm(features_files, total=len(features_files), desc='Computing class representatives'):
with h5py.File(class_features, 'r') as features:
centroids = [compute_centroid(features[layer], medoid=args.medoid) for layer in tqdm(layer_names)]
class_centroids.append(centroids)
layer_centroids = zip(*class_centroids)
print('Saving centroids:', args.output_file)
with h5py.File(args.output_file, 'w') as out:
for layer, centroids in tqdm(zip(layer_names, layer_centroids)):
centroids = np.stack(centroids)
out.create_dataset('{}'.format(layer), data=centroids)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Features extraction with pre-trained CNN')
parser.add_argument('-dp', '--dataset-path', help='Load Model Checkpoint')
parser.add_argument('-bs', '--batch-size', type=int, default=32, help='Batch size (default: 32)')
parser.add_argument('-bm', '--base-model-path', help='Path to base model checkpoint')
parser.add_argument('-ck', '--model-checkpoint', help='Fine-tuned model checkpoint path')
parser.add_argument('-ff', '--features-folder', help='Output folder')
parser.add_argument('-cr', '--class-representatices', choices=('c', 'm'), default='c',
help='Compute class representatives (default: centroids).')
parser.add_argument('-d', '--distance', default='euclidean',
help='Distance metric for computing medoids (see scipy.spatial.distance.pdist for choices).')
args = parser.parse_args()
if args.extract_features:
print("*"*20, 'Features Extraction', "*"*20)
extract_features(args)
print("*"*20, 'Evaluating Class Representatives', "*"*20)
compute_class_representatives(args)
else:
print("*"*20, 'Evaluating Class Representatives', "*"*20)
compute_class_representatives(args)