Skip to content

Latest commit

 

History

History
335 lines (275 loc) · 6.27 KB

performance.md

File metadata and controls

335 lines (275 loc) · 6.27 KB

AbyssBook Performance Tuning Guide

System Requirements

Hardware Recommendations

  • CPU: Modern x86_64 with AVX2 support
  • Memory: 32GB+ RAM
  • Storage: NVMe SSD
  • Network: 10Gbps+ connection

Operating System Configuration

# Increase max file descriptors
ulimit -n 1000000

# Optimize network
sysctl -w net.core.rmem_max=16777216
sysctl -w net.core.wmem_max=16777216

# Disable CPU frequency scaling
cpupower frequency-set --governor performance

Performance Optimization

1. Shard Configuration

Optimal shard count depends on your system:

// Calculate optimal shard count
const cpu_cores = try std.Thread.getCpuCount();
const l3_cache_size = try getCPUCacheSize(.L3);
const optimal_shards = calculateOptimalShards(
    cpu_cores,
    l3_cache_size
);

// Initialize with optimal shards
var book = try orderbook.ShardedOrderbook.init(
    allocator,
    optimal_shards
);

2. Memory Layout

Optimize data structure alignment:

// Cache-aligned order structure
const CacheAlignedOrder = struct {
    price: u64 align(64),
    amount: u64,
    id: u64,
    flags: OrderFlags,
    padding: [24]u8,  // Ensure 64-byte alignment
};

// SIMD-friendly batch structure
const OrderBatch = struct {
    orders: [128]CacheAlignedOrder align(32),
    count: usize,
};

3. SIMD Optimization

Enable vectorized operations:

// Configure SIMD settings
const SimdConfig = struct {
    vector_width: u32,
    prefetch_distance: u32,
    cache_line_size: u32,
};

// Initialize with optimal SIMD config
const config = SimdConfig{
    .vector_width = if (builtin.cpu.features.avx2) 256 else 128,
    .prefetch_distance = 8,
    .cache_line_size = 64,
};

Performance Monitoring

1. Latency Tracking

Monitor order processing latency:

// Initialize latency monitor
var monitor = PerformanceMonitor.init(allocator);
defer monitor.deinit();

// Track operation latency
const start = std.time.nanoTimestamp();
try book.placeOrder(order);
const end = std.time.nanoTimestamp();

// Record metrics
try monitor.recordLatency(end - start);

2. Throughput Measurement

Track order processing rates:

// Measure throughput
const ThroughputMetrics = struct {
    orders_per_second: f64,
    matches_per_second: f64,
    bytes_processed: usize,
};

// Calculate metrics
const metrics = try monitor.calculateThroughput(
    order_count,
    match_count,
    elapsed_time
);

3. Resource Utilization

Monitor system resources:

// Track resource usage
const ResourceMetrics = struct {
    cpu_usage: f64,
    memory_usage: usize,
    cache_misses: u64,
    network_throughput: u64,
};

// Monitor resources
try monitor.trackResources();

Optimization Techniques

1. Batch Processing

Use bulk operations for higher throughput:

// Prepare order batch
var batch = OrderBatch.init();
for (orders) |order| {
    try batch.addOrder(order);
    
    // Process batch when full
    if (batch.isFull()) {
        try book.processBatch(&batch);
        batch.clear();
    }
}

2. Memory Management

Optimize memory usage:

// Use arena allocator for batches
var arena = std.heap.ArenaAllocator.init(allocator);
defer arena.deinit();

// Process with zero allocations
try book.processOrdersZeroCopy(
    arena.allocator(),
    orders
);

3. Concurrency

Optimize parallel processing:

// Configure thread pool
const ThreadPoolConfig = struct {
    thread_count: usize,
    queue_size: usize,
    stack_size: usize,
};

// Initialize thread pool
var pool = try ThreadPool.init(ThreadPoolConfig{
    .thread_count = cpu_cores,
    .queue_size = 1024,
    .stack_size = 16384,
});

Performance Tuning

1. CPU Optimization

// Enable CPU features
const CpuFeatures = struct {
    use_avx2: bool,
    use_avx512: bool,
    use_fma: bool,
};

// Configure CPU features
try book.setCpuFeatures(.{
    .use_avx2 = true,
    .use_avx512 = cpu_info.has_avx512,
    .use_fma = true,
});

2. Memory Tuning

// Configure memory settings
const MemoryConfig = struct {
    page_size: usize,
    huge_pages: bool,
    prefetch: bool,
};

// Optimize memory usage
try book.setMemoryConfig(.{
    .page_size = 2 * 1024 * 1024,  // 2MB pages
    .huge_pages = true,
    .prefetch = true,
});

3. Network Optimization

// Configure network settings
const NetworkConfig = struct {
    tcp_nodelay: bool,
    keepalive: bool,
    buffer_size: usize,
};

// Optimize network
try book.setNetworkConfig(.{
    .tcp_nodelay = true,
    .keepalive = true,
    .buffer_size = 16 * 1024 * 1024,
});

Performance Benchmarking

1. Latency Benchmarks

# Run latency benchmark
zig build bench-latency

# Results format:
# P50: 0.3μs
# P95: 0.5μs
# P99: 0.8μs
# P99.9: 1.2μs

2. Throughput Benchmarks

# Run throughput benchmark
zig build bench-throughput

# Results format:
# Orders/sec: 1,000,000
# Matches/sec: 500,000
# Data Rate: 10GB/s

3. Stress Testing

# Run stress test
zig build stress-test

# Results format:
# Max Load: 2M orders/sec
# Error Rate: <0.001%
# Recovery Time: <1ms

Monitoring Tools

1. Real-time Metrics

// Initialize metrics dashboard
var dashboard = try MetricsDashboard.init(allocator);
defer dashboard.deinit();

// Add metrics
try dashboard.addMetric("order_latency", .Histogram);
try dashboard.addMetric("match_rate", .Counter);
try dashboard.addMetric("throughput", .Gauge);

// Start monitoring
try dashboard.start();

2. Performance Alerts

// Configure alerts
const AlertConfig = struct {
    latency_threshold: u64,
    error_threshold: f64,
    load_threshold: usize,
};

// Set up alerting
try monitor.setAlerts(.{
    .latency_threshold = 1000,  // 1μs
    .error_threshold = 0.001,   // 0.1%
    .load_threshold = 1_000_000,// 1M orders/sec
});

Optimization Checklist

Pre-deployment

  • Configure optimal shard count
  • Enable SIMD operations
  • Set up memory alignment
  • Configure thread pool
  • Enable performance monitoring

Runtime

  • Monitor latency distribution
  • Track throughput metrics
  • Watch resource utilization
  • Check error rates
  • Monitor cache efficiency

Maintenance

  • Regular performance testing
  • System optimization
  • Resource cleanup
  • Metric analysis
  • Capacity planning