-
Notifications
You must be signed in to change notification settings - Fork 69
/
Copy pathtrain_denoiser.lua
382 lines (317 loc) · 14.3 KB
/
train_denoiser.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
--[[
This script trains a denoising autoencoder.
After training, you can add it to the training run of the G/D pair in train.lua by
adding "--denoise" as a parameter.
I added it in an effort to easily get rid of noise and fix distortions in the generated faces.
Worked like arse. -__-
--]]
require 'torch'
require 'nn'
require 'optim'
require 'image'
require 'pl'
require 'paths'
ok, disp = pcall(require, 'display')
if not ok then print('display not found. unable to plot') end
DATASET = require 'dataset'
NN_UTILS = require 'utils/nn_utils'
----------------------------------------------------------------------
-- parse command-line options
OPT = lapp[[
--save (default "logs") subdirectory to save logs
--saveFreq (default 50) save every saveFreq epochs
--network (default "") reload pretrained network
--noplot Whetehr to not plot while training
--batchSize (default 128) batch size
--coefL1 (default 0) L1 penalty on the weights
--coefL2 (default 0) L2 penalty on the weights
--AE_clamp (default 1)
--threads (default 8) number of threads
--gpu (default 0) gpu to run on (default cpu)
--window (default 10) first window id (will block range ID to ID+3)
--scale (default 16) scale of images to train on
--seed (default 1) Seed to use for the RNG
--grayscale Whether to activate grayscale mode on the images
]]
-- GPU, seed, threads
if OPT.gpu < 0 or OPT.gpu > 3 then OPT.gpu = false end
math.randomseed(OPT.seed)
torch.manualSeed(OPT.seed)
torch.setnumthreads(OPT.threads)
print(OPT)
print('<torch> set nb of threads to ' .. torch.getnumthreads())
-- run on gpu if chosen
if OPT.gpu then
print("<trainer> starting gpu support...")
require 'cutorch'
require 'cunn'
cutorch.setDevice(OPT.gpu + 1)
cutorch.manualSeed(OPT.seed)
print(string.format("<trainer> using gpu device %d", OPT.gpu))
else
require 'nn'
end
require 'dpnn'
require 'LeakyReLU'
torch.setdefaulttensortype('torch.FloatTensor')
IMG_DIMENSIONS = {3, OPT.scale, OPT.scale} -- axis of images: 1 or 3 channels, <scale> px height, <scale> px width
if OPT.grayscale then IMG_DIMENSIONS[1] = 1 end
INPUT_SZ = IMG_DIMENSIONS[1] * IMG_DIMENSIONS[2] * IMG_DIMENSIONS[3] -- size in values/pixels per input image (channels*height*width)
-- Main function, initialize models and train them.
function main()
if OPT.network ~= "" then
-- Continue previous run / load network
print(string.format("<trainer> reloading previously trained network: %s", OPT.network))
local filename = paths.concat(OPT.save, 'denoiser.net')
local tmp = torch.load(filename)
AE = nn.Sequential()
AE:add(tmp.AE1_ENCODER)
AE:add(tmp.AE1_DECODER)
AE2 = nn.Sequential()
AE2:add(tmp.AE2_DECODER)
EPOCH = tmp.epoch
else
-- Initialize autoencoder
-- Encoder: Just image + white/gaussian noise.
-- Decoder: 8 conv 3x3, 8 conv 3x3 into 2x 2048 linear
local ENCODER = nn.Sequential()
ENCODER:add(nn.WhiteNoise(0.0, 0.1))
local DECODER = nn.Sequential()
DECODER:add(nn.SpatialConvolution(IMG_DIMENSIONS[1], 8, 3, 3, 1, 1, 0))
DECODER:add(nn.SpatialBatchNormalization(8))
DECODER:add(nn.LeakyReLU(0.333))
DECODER:add(nn.SpatialConvolution(8, 8, 3, 3, 1, 1, 0))
DECODER:add(nn.SpatialBatchNormalization(8))
DECODER:add(nn.LeakyReLU(0.333))
DECODER:add(nn.Dropout(0.2))
local imgSize = (IMG_DIMENSIONS[2] - 2 - 2) * (IMG_DIMENSIONS[3] - 2 - 2)
DECODER:add(nn.View(8 * imgSize))
DECODER:add(nn.Linear(8 * imgSize, 2048))
DECODER:add(nn.BatchNormalization(2048))
DECODER:add(nn.LeakyReLU(0.333))
DECODER:add(nn.Dropout(0.2))
DECODER:add(nn.Linear(2048, IMG_DIMENSIONS[1] * IMG_DIMENSIONS[2] * IMG_DIMENSIONS[3]))
DECODER:add(nn.Sigmoid())
DECODER:add(nn.View(IMG_DIMENSIONS[1], IMG_DIMENSIONS[2], IMG_DIMENSIONS[3]))
NN_UTILS.initializeWeights(ENCODER)
NN_UTILS.initializeWeights(DECODER)
AE = nn.Sequential()
AE:add(ENCODER)
AE:add(DECODER)
-- AE2 is a second decoder that receives the images from the first autoencoder and
-- also denoises them. Can't remember what i hoped to achieve with that.
AE2 = AE:get(2):clone()
end
-- Copy to GPU
if OPT.gpu then
AE = NN_UTILS.activateCuda(AE)
AE2 = NN_UTILS.activateCuda(AE2)
end
-- loss function
CRITERION = nn.BCECriterion()
CRITERION2 = nn.BCECriterion()
-- retrieve parameters and gradients
PARAMETERS_AE, GRAD_PARAMETERS_AE = AE:getParameters()
PARAMETERS_AE2, GRAD_PARAMETERS_AE2 = AE2:getParameters()
-- print networks
print("<trainer> Autoencoder network:")
print(AE)
----------------------------------------------------------------------
-- get/create dataset
----------------------------------------------------------------------
-- adjust dataset
if OPT.aws then
DATASET.setDirs({"/mnt/datasets/out_aug_64x64"})
else
DATASET.setDirs({"dataset/out_aug_64x64"})
end
DATASET.setFileExtension("jpg")
DATASET.setScale(OPT.scale)
DATASET.setNbChannels(IMG_DIMENSIONS[1])
-- create training set
print('<trainer> Loading training dataset...')
TRAIN_DATA = DATASET.loadImages(1, 10000)
print('<trainer> Loading validation dataset...')
VAL_DATA = DATASET.loadImages(10001, 256)
VAL_DATA_TENSOR = imageListToTensor(VAL_DATA)
----------------------------------------------------------------------
-- Set optimizer state
OPTSTATE = {
adagrad = {},
adam = {}
}
-- training loop
EPOCH = 1
PLOT_DATA = {}
MIN_LOSS = 9999999
MIN_LOSS2 = 9999999
while true do
loss1, loss2 = train(TRAIN_DATA)
if not OPT.noplot then
AE:evaluate()
AE2:evaluate()
local valResult1 = AE:forward(VAL_DATA_TENSOR)
local valResult2 = AE2:forward(valResult1)
table.insert(PLOT_DATA, {EPOCH, loss1, loss2, CRITERION:forward(valResult1, VAL_DATA_TENSOR), CRITERION2:forward(valResult2, VAL_DATA_TENSOR)})
if loss1 < MIN_LOSS then MIN_LOSS = loss1 end
if loss2 < MIN_LOSS2 then MIN_LOSS2 = loss2 end
local samplesTrain = getSamples(TRAIN_DATA, 100)
local samplesVal = getSamples(VAL_DATA, 100)
disp.image(samplesTrain[1], {win=OPT.window, width=IMG_DIMENSIONS[3]*15, title=OPT.save .. " (originals train)"})
disp.image(samplesTrain[2], {win=OPT.window+1, width=IMG_DIMENSIONS[3]*15, title=OPT.save .. " (decoded train)"})
disp.image(samplesTrain[3], {win=OPT.window+2, width=IMG_DIMENSIONS[3]*15, title=OPT.save .. " (decoded train 2)"})
disp.image(samplesVal[1], {win=OPT.window+3, width=IMG_DIMENSIONS[3]*15, title=OPT.save .. " (originals val)"})
disp.image(samplesVal[2], {win=OPT.window+4, width=IMG_DIMENSIONS[3]*15, title=OPT.save .. " (decoded val)"})
disp.image(samplesVal[3], {win=OPT.window+5, width=IMG_DIMENSIONS[3]*15, title=OPT.save .. " (decoded val 2)"})
-- Plot the loss values of the last epochs
disp.plot(PLOT_DATA, {win=OPT.window+6, labels={'epoch', 'AE train loss', 'AE2 train loss', 'AE val loss', 'AE2 val loss'}, title=string.format('Loss at epoch %d (min1=%.5f, min2=%.5f)', EPOCH-1, MIN_LOSS, MIN_LOSS2)})
AE:training()
AE2:training()
end
end
end
-- Convert a list/table of image tensors into one tensor.
-- @param imageList List of image tensors
-- @return Tensor
function imageListToTensor(imageList)
local tens = torch.Tensor(#imageList, imageList[1]:size(1), imageList[1]:size(2), imageList[1]:size(3))
for i=1,#imageList do
tens[i] = imageList[i]
end
return tens
end
-- Get examples to plot
-- @param ds Examples as returned by Dataset
-- @param N Number of images
-- @returns Tuple {images, images decoded by AE1, images decoded by AE1 then AE2}
function getSamples(ds, N)
local images = torch.Tensor(N, IMG_DIMENSIONS[1], IMG_DIMENSIONS[2], IMG_DIMENSIONS[3])
for i=1, N do
images[i] = ds[i]
end
local decoded = AE:forward(images)
local decoded2 = AE2:forward(decoded)
return {images:clone(), decoded:clone(), decoded2:clone()}
end
-- Train one epoch
-- @param usedDataset Examples as returned by Dataset
-- @returns Loss AE1, Loss AE2
function train(usedDataset)
EPOCH = EPOCH or 1
local N = usedDataset:size()
local time = sys.clock()
local shuffle = torch.randperm(N)
local sumLossCriterion = 0
local sumLossCriterion2 = 0
-- do one epoch
print("<trainer> online epoch # " .. EPOCH .. ' [batchSize = ' .. OPT.batchSize .. ']')
for t = 1,N,OPT.batchSize do
-- if the last batch has a size smaller than opt.batchSize, adjust for that
local thisBatchSize = math.min(OPT.batchSize, N - t + 1)
local inputs = torch.Tensor(thisBatchSize, IMG_DIMENSIONS[1], IMG_DIMENSIONS[2], IMG_DIMENSIONS[3])
local targets = torch.Tensor(thisBatchSize, IMG_DIMENSIONS[1], IMG_DIMENSIONS[2], IMG_DIMENSIONS[3])
for i=1,thisBatchSize do
inputs[{i, {}, {}, {}}] = usedDataset[shuffle[t+i-1]]
targets[{i, {}, {}, {}}] = usedDataset[shuffle[t+i-1]]
end
----------------------------------------------------------------------
-- create closure to evaluate f(X) and df/dX of discriminator
local fevalAE = function(x)
collectgarbage()
if x ~= PARAMETERS_AE then -- get new parameters
PARAMETERS_AE:copy(x)
end
GRAD_PARAMETERS_AE:zero() -- reset gradients
-- forward pass
local outputs = AE:forward(inputs)
local f = CRITERION:forward(outputs, targets)
sumLossCriterion = sumLossCriterion + CRITERION.output
-- backward pass
local df_do = CRITERION:backward(outputs, targets)
AE:backward(inputs, df_do)
-- penalties (L1 and L2):
if OPT.coefL1 ~= 0 or OPT.coefL2 ~= 0 then
local norm = torch.norm
local sign = torch.sign
-- Loss:
f = f + OPT.coefL1 * torch.norm(PARAMETERS_AE, 1)
f = f + OPT.coefL2 * torch.norm(PARAMETERS_AE, 2)^2/2
-- Gradients:
GRAD_PARAMETERS_AE:add( torch.sign(PARAMETERS_AE):mul(OPT.coefL1) + PARAMETERS_AE:clone():mul(OPT.coefL2) )
end
if OPT.AE_clamp ~= 0 then
GRAD_PARAMETERS_AE:clamp((-1)*OPT.AE_clamp, OPT.AE_clamp)
end
return f, GRAD_PARAMETERS_AE
end
----------------------------------------------------------------------
-- create closure to evaluate f(X) and df/dX of discriminator
local fevalAE2 = function(x)
collectgarbage()
if x ~= PARAMETERS_AE2 then -- get new parameters
PARAMETERS_AE2:copy(x)
end
GRAD_PARAMETERS_AE2:zero() -- reset gradients
-- forward pass
local outputs1 = AE:forward(inputs)
local outputs2 = AE2:forward(outputs1)
local f = CRITERION2:forward(outputs2, targets)
sumLossCriterion2 = sumLossCriterion2 + CRITERION2.output
-- backward pass
local df_do = CRITERION2:backward(outputs2, targets)
AE2:backward(outputs1, df_do)
-- penalties (L1 and L2):
if OPT.coefL1 ~= 0 or OPT.coefL2 ~= 0 then
local norm = torch.norm
local sign = torch.sign
-- Loss:
f = f + OPT.coefL1 * torch.norm(PARAMETERS_AE2, 1)
f = f + OPT.coefL2 * torch.norm(PARAMETERS_AE2, 2)^2/2
-- Gradients:
GRAD_PARAMETERS_AE2:add( torch.sign(PARAMETERS_AE2):mul(OPT.coefL1) + PARAMETERS_AE2:clone():mul(OPT.coefL2) )
end
if OPT.AE_clamp ~= 0 then
GRAD_PARAMETERS_AE2:clamp((-1)*OPT.AE_clamp, OPT.AE_clamp)
end
return f, GRAD_PARAMETERS_AE2
end
optim.adam(fevalAE, PARAMETERS_AE, OPTSTATE.adam)
optim.adam(fevalAE2, PARAMETERS_AE2, OPTSTATE.adam)
--optim.adagrad(fevalAE, PARAMETERS_AE, OPTSTATE.adagrad)
-- display progress
xlua.progress(t + thisBatchSize, usedDataset:size())
end
-- time taken
time = sys.clock() - time
print(string.format("<trainer> time required for this epoch = %ds", time))
time = time / usedDataset:size()
print(string.format("<trainer> time to learn 1 sample = %.4fms", (time*1000)))
print(string.format("<trainer> loss AE1 = %.4f", (sumLossCriterion/(N/OPT.batchSize))))
print(string.format("<trainer> loss AE2 = %.4f", (sumLossCriterion2/(N/OPT.batchSize))))
-- save/log current net
if EPOCH % OPT.saveFreq == 0 then
local filename = paths.concat(OPT.save, string.format('denoiser_%dx%dx%d.net', IMG_DIMENSIONS[1], IMG_DIMENSIONS[2], IMG_DIMENSIONS[3]))
os.execute('mkdir -p ' .. sys.dirname(filename))
print('<trainer> saving network to '..filename)
NN_UTILS.prepareNetworkForSave(AE)
NN_UTILS.prepareNetworkForSave(AE2)
local AE1_nocuda = NN_UTILS.deactivateCuda(AE)
local AE2_nocuda = NN_UTILS.deactivateCuda(AE2)
torch.save(filename, {AE1_ENCODER = AE1_nocuda:get(1),
AE1_DECODER = AE1_nocuda:get(2),
AE2_DECODER = AE2_nocuda})
end
-- next epoch
EPOCH = EPOCH + 1
return sumLossCriterion/(N/OPT.batchSize), sumLossCriterion2/(N/OPT.batchSize)
end
-- Calls os.exit() if any NaNs were detected in given tensor.
-- @param checkIn A tensor to search for NaNs
function exitIfNaNs(checkIn)
local nanCount = checkIn:ne(checkIn):sum()
if nanCount > 0 then
print("[ERROR] Detected " .. nanCount .. " NaNs. Exiting.")
os.exit()
end
end
main()