-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy path15-Matrices A(t) Depending on t, Derivative = dA_dt.srt
executable file
·3988 lines (3190 loc) · 82 KB
/
15-Matrices A(t) Depending on t, Derivative = dA_dt.srt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1
00:00:01,069 --> 00:00:03,194
以下内容提供
the following content is provided under
2
00:00:03,199 --> 00:00:05,715
CreativeCommons许可您的支持
a Creative Commons license your support
3
00:00:05,720 --> 00:00:08,024
将帮助MITOpenCourseWare继续
will help MIT OpenCourseWare continue to
4
00:00:08,029 --> 00:00:09,855
提供高质量的教育资源
offer high quality educational resources
5
00:00:09,860 --> 00:00:10,935
免费
for free
6
00:00:10,940 --> 00:00:13,125
捐款或查看额外的捐款
to make a donation or to view additional
7
00:00:13,130 --> 00:00:15,165
数百个麻省理工学院课程的材料
materials from hundreds of MIT courses
8
00:00:15,170 --> 00:00:21,394
访问位于ocw.mit.edu的麻省理工学院开放式课件
visit MIT opencourseware at ocw.mit.edu
9
00:00:21,399 --> 00:00:24,545
所以我周末都在努力工作
so I've worked hard over the weekend
10
00:00:24,550 --> 00:00:27,045
弄清楚我上次做了什么
figured out what I was doing last time
11
00:00:27,050 --> 00:00:29,105
和我在做什么这个时间和
and what I'm doing this time and
12
00:00:29,110 --> 00:00:32,775
改进了笔记,所以你会得到一个新的
improved the notes so you'll get a new
13
00:00:32,780 --> 00:00:36,585
关于上一讲和以后的一套笔记
set of notes on the last lecture and on
14
00:00:36,590 --> 00:00:41,145
这个和我有点得到了
this one and I kind of got to got a
15
00:00:41,150 --> 00:00:43,515
我们在做什么更好的画面和
better picture of what we're doing and
16
00:00:43,520 --> 00:00:47,535
该委员会的目标是描述
that board is aiming to describe the
17
00:00:47,540 --> 00:00:50,324
我们最后做的事情的大局
large picture of what we're doing last
18
00:00:50,329 --> 00:00:54,555
时间,这次是最后一次
time and this time so last time was
19
00:00:54,560 --> 00:00:59,505
关于a时的逆变化
about changes in a inverse when a
20
00:00:59,510 --> 00:01:04,115
改变这个时间是关于变化的
changed this time is about changes in
21
00:01:04,120 --> 00:01:07,515
特征值和奇异变化
eigenvalues and changes in singular
22
00:01:07,520 --> 00:01:10,245
当你可以想象的变化时的价值观
values when a changes you can imagine
23
00:01:10,250 --> 00:01:12,904
这是一个自然重要的情况
this is a natural important situation
24
00:01:12,909 --> 00:01:17,775
矩阵移动,因此他们的
matrices move and therefore their
25
00:01:17,780 --> 00:01:21,965
反转改变了它们的特征值变化
inverses change their eigenvalues change
26
00:01:21,970 --> 00:01:27,224
他们的奇异价值会改变,而你就是这样
their singular values change and it you
27
00:01:27,229 --> 00:01:30,585
希望有一个公式,所以我们确实有一个
hope for a formula well so we did have a
28
00:01:30,590 --> 00:01:35,745
上次改变的公式
formula for last time for the change in
29
00:01:35,750 --> 00:01:40,904
反矩阵这样和我一样
the inverse matrix so that's and I
30
00:01:40,909 --> 00:01:44,385
没有得到每个U和V转置
didn't get every U and V transpose in
31
00:01:44,390 --> 00:01:48,945
视频中的正确位置,但在或
the right place in the video but or in
32
00:01:48,950 --> 00:01:52,755
笔记的第一个版本,但我
the first version of the notes but I
33
00:01:52,760 --> 00:01:56,385
希望有这样的公式
hope that there'll be the formula that
34
00:01:56,390 --> 00:01:59,864
Woodberrymorrison公式将是
that Woodberry morrison formula will be
35
00:01:59,869 --> 00:02:00,675
正确
correct
36
00:02:00,680 --> 00:02:07,485
这次确定,所以因此我不会回去了
this time ok so so I won't go back over
37
00:02:07,490 --> 00:02:10,155
那部分
that part
38
00:02:10,160 --> 00:02:13,845
但我也意识到还有另一个
but I realize also there there's another
39
00:02:13,850 --> 00:02:16,635
问题是,我们能回答的时候
question that we can answer when the
40
00:02:16,640 --> 00:02:20,895
改变时的变化非常小
change is very small when the change in
41
00:02:20,900 --> 00:02:27,015
a是da或Deltaa的一个小变化和
a is da or Delta a of a small change and
42
00:02:27,020 --> 00:02:29,675
这当然是微积分的意义所在
that's of course what calculus is about
43
00:02:29,680 --> 00:02:35,715
所以我必须要有一些平行的主题
so I have to sort of parallel topics
44
00:02:35,720 --> 00:02:41,085
这里的衍生物是什么?
here what is the derivative when the
45
00:02:41,090 --> 00:02:46,305
它的变化是无穷小的
changes of of it is infinitesimal and
46
00:02:46,310 --> 00:02:50,265
什么是实际的变化
what is the actual change when the
47
00:02:50,270 --> 00:02:56,325
变化是有限大小没关系所以现在让我
change is finite size okay so now let me
48
00:02:56,330 --> 00:02:59,115
说什么我们可以做,什么不能做
say what we can do and what we can't do
49
00:02:59,120 --> 00:03:06,105
因为哦,我会先搞清楚
for oh I'll start out by figuring out
50
00:03:06,110 --> 00:03:08,835
衍生物的反转是什么
what the derivative is for the inverse
51
00:03:08,840 --> 00:03:11,295
这就像最后一次完成一样
so that's like completing the last time
52
00:03:11,300 --> 00:03:14,985
对于无穷小的变化,我会移动
for infinitesimal changes then I'll move
53
00:03:14,990 --> 00:03:19,275
关于特征值和特征值的变化
on to changes in the eigenvalues and
54
00:03:19,280 --> 00:03:23,595
奇异的价值观,你不能
singular values and there you cannot
55
00:03:23,600 --> 00:03:27,585
期待一个精确的公式,我们有一个我们有
expect an exact formula we had a we had
56
00:03:27,590 --> 00:03:31,005
一个完全不同的公式
a formula that was exact apart from any
57
00:03:31,010 --> 00:03:34,215
这个错别字,我们会找到一个公式
typos for this and we'll find a formula
58
00:03:34,220 --> 00:03:36,015
为此,我们将找到一个公式
for this and we'll find a formula for
59
00:03:36,020 --> 00:03:38,685
这一点,对于清楚,一次会
that and for that well that one will
60
00:03:38,690 --> 00:03:41,115
来自这一个,所以这将是一个
come from this one so so this will be a
61
00:03:41,120 --> 00:03:44,745
今天突出强调特征值如何
highlight today how do the eigen values
62
00:03:44,750 --> 00:03:49,995
当矩阵改变但我们改变时
change when the matrix changes but we
63
00:03:50,000 --> 00:03:52,875
我们无法与此平行
won't be able to do parallel to this we
64
00:03:52,880 --> 00:03:55,515
我们将无法做到
won't be able to oh well we will be able
65
00:03:55,520 --> 00:03:57,885
为你做些事情的变化有限
to do something for finite changes
66
00:03:57,890 --> 00:04:00,405
这对数学来说很重要
that's important the mathematics would
67
00:04:00,410 --> 00:04:03,105
必须继续打击它的问题
have to keep hitting it that problem
68
00:04:03,110 --> 00:04:05,925
直到它到达某个地方所以我不会得到一个
until it got somewhere so I won't get an
69
00:04:05,930 --> 00:04:08,204
改变的确切公式也是如此
exact formula for the change that's too
70
00:04:08,209 --> 00:04:12,585
很多,但我会得到不平等有多大
much but I'll get inequalities how big
71
00:04:12,590 --> 00:04:14,445
这种变化可能是我能说的
that change could be what can I say
72
00:04:14,450 --> 00:04:18,285
关于它,所以这些是高度的
about it so these are that's highly
73
00:04:18,290 --> 00:04:21,335
有趣的是我可以从这开始
interesting may I start with the
74
00:04:21,340 --> 00:04:23,985
完成上一课的内容
completing the last lecture what
75
00:04:23,990 --> 00:04:26,594
逆的导数,所以我
the derivative of the inverse so I'm
76
00:04:26,599 --> 00:04:30,465
想到这里是什么设置了
thinking here so what's the setup the
77
00:04:30,470 --> 00:04:37,694
设置是我的矩阵,取决于时间
setup is my matrix a depends on time on
78
00:04:37,699 --> 00:04:46,325
T和它有一个逆逆
T and it has an inverse a inverse
79
00:04:46,330 --> 00:04:50,775
取决于T,如果我知道这一点
depends on T and if I know this
80
00:04:50,780 --> 00:04:52,965
换言之,如果我知道da
dependence in other words if I know da
81
00:04:52,970 --> 00:04:56,715
DT矩阵的含义是多少
DT how much what how the matrix is
82
00:04:56,720 --> 00:04:58,754
取决于T然后我希望我能
depending on T then I hope I could
83
00:04:58,759 --> 00:05:01,515
弄清楚a的衍生物是什么
figure out what the derivative of a
84
00:05:01,520 --> 00:05:04,904
逆是我们应该能够做到的
inverse is that we should be able to do
85
00:05:04,909 --> 00:05:08,925
这就让我开始吧
this so let me just start with the it's
86
00:05:08,930 --> 00:05:13,455
并不难,它补充了这个
not hard and it complements this one by
87
00:05:13,460 --> 00:05:16,995
做微积分的情况下将
doing the calculus case the the
88
00:05:17,000 --> 00:05:21,404
微小变化,所以我想要去
infinitesimal change so I want to get to
89
00:05:21,409 --> 00:05:27,974
我得到了我能得到的
that I'm given I'm given I can figure
90
00:05:27,979 --> 00:05:30,855
a的变化和我的工作是
out the change in a and my job is to
91
00:05:30,860 --> 00:05:39,645
找到一个改变这个a的衍生物
find a change the derivative of this a
92
00:05:39,650 --> 00:05:48,154
反之亦然所以这里很方便
and of a inverse okay so here's a handy
93
00:05:48,159 --> 00:05:52,935
身份,我只是把它放在这里
identity and I just put this here so
94
00:05:52,940 --> 00:06:00,254
这是我想要的有用身份
here's my useful identity I want to so
95
00:06:00,259 --> 00:06:02,955
就像上次我开始用一个
as last time I start with a with a
96
00:06:02,960 --> 00:06:05,085
有限变化其微积分总是如此
finite change its calculus always does
97
00:06:05,090 --> 00:06:08,055
那个权利从一个三角洲T开始
that right starts with a delta T and
98
00:06:08,060 --> 00:06:11,085
然后它变为零所以我在这里
then it goes to zero so so here I'm up
99
00:06:11,090 --> 00:06:14,414
在完整的尺寸变化,所以我认为
at the full size change so I think that
100
00:06:14,419 --> 00:06:21,425
这等于B逆a-Ba
this is equal to B inverse a minus B a
101
00:06:21,430 --> 00:06:28,154
反过来,如果它是真的那就是a
inverse and that's if it's true it's a
102
00:06:28,159 --> 00:06:31,414
非常酷的配方,看起来是真的
pretty cool formula and look it is true
103
00:06:31,419 --> 00:06:33,974
因为在这个右手边我
because over on this right hand side I
104
00:06:33,979 --> 00:06:36,564
有B反时间aa
have B inverse times a a
105
00:06:36,569 --> 00:06:38,515
与身份相比,这是我的B.
versus the identity so that's my B
106
00:06:38,520 --> 00:06:41,394
逆,我有减去B
inverse and I have the minus the B
107
00:06:41,399 --> 00:06:43,614
逆B是有一个身份
inverse B is the identity there is a
108
00:06:43,619 --> 00:06:48,944
反之,这是好的,所以这是一个
inverse it's good right so so that is a
109
00:06:48,949 --> 00:06:52,344
从那个方面我们可以真正学习
from that well we I could actually learn
110
00:06:52,349 --> 00:07:02,325
从那个等级的等级
from that the the rank of this equals
111
00:07:02,330 --> 00:07:08,844
这是一个重点
the rank of this that's that's a point
112
00:07:08,849 --> 00:07:11,605
我从大公式制造但现在
that I made from the big formula but now
113
00:07:11,610 --> 00:07:15,684
我们可以从简单的公式中看到它
we can see it from easy formula I'm
114
00:07:15,689 --> 00:07:18,084
假设B和a到处都是
assuming that B and a everywhere here
115
00:07:18,089 --> 00:07:19,735
我假设a和b是可逆的
I'm assuming that a and b are invertible
116
00:07:19,740 --> 00:07:22,524
当我乘以一个矩阵时
matrices so when i multiply by an
117
00:07:22,529 --> 00:07:25,134
可变矩阵不会改变
invertible matrix that does not change
118
00:07:25,139 --> 00:07:28,524
排名所以那些排名相同
the rank so the those have the same rank
119
00:07:28,529 --> 00:07:31,344
但我会比那更进一步
but I'm gonna get further than that I
120
00:07:31,349 --> 00:07:36,434
想找到这个没问题,那我该怎么办呢
want to find this okay so how do I go
121
00:07:36,439 --> 00:07:41,004
我该如何继续这项工作呢
how do I go forward with that job to
122
00:07:41,009 --> 00:07:43,374
很好地找到宇宙的衍生物
find the derivative of the universe well
123
00:07:43,379 --> 00:07:47,355
我要让我打电话给这个
I'm gonna let I'm gonna call this a
124
00:07:47,360 --> 00:07:52,554
在这里改变倒数
change in a inverse and over here
125
00:07:52,559 --> 00:08:02,754
我会有V会是的,好吧,看对了
I'll have V will be yeah okay see right
126
00:08:02,759 --> 00:08:08,304
是的,所以B逆将这是真的
yeah so B inverse will be this is really
127
00:08:08,309 --> 00:08:14,994
这是一个加上Delta逆转而且这个
this is a plus Delta a inverse and this
128
00:08:14,999 --> 00:08:18,355
很好,这是一个减B,所以这是
is well that's a minus B so that's
129
00:08:18,360 --> 00:08:23,264
真的减去Delta一个减去右边
really minus Delta a minus right
130
00:08:23,269 --> 00:08:29,094
变化是从A到B的变化
the change is from A to B is the change
131
00:08:29,099 --> 00:08:32,305
我正在看这个区别
here I'm looking at this the difference
132
00:08:32,310 --> 00:08:34,884
减去减B所以这是一个变化,
a minus B so it's minus a change and
133
00:08:34,889 --> 00:08:38,305
在这里,我有一个反向我没有做过
here I have a inverse I haven't done
134
00:08:38,310 --> 00:08:43,875
除了介绍这个Delta以外的任何东西
anything except to introduce this Delta
135
00:08:43,880 --> 00:08:46,944
为了让我离开它并带来
for the and get me out of it and brought
136
00:08:46,949 --> 00:08:49,944
三角洲现在好吗我想做
Delta in okay now I want to do
137
00:08:49,949 --> 00:08:51,225
计算
calculations
138
00:08:51,230 --> 00:08:56,155
所以我想B是你知道的
so I'm thinking of B as being you know a
139
00:08:56,160 --> 00:08:58,795
有点儿,有点儿
little a little there's a sort of a
140
00:08:58,800 --> 00:09:01,825
三角洲T和我双方要分
delta T and I'm gonna divide by both
141
00:09:01,830 --> 00:09:05,455
如果我,deltaTI必须这样做
sides by delta T I have to do this if I
142
00:09:05,460 --> 00:09:14,365
想要,现在我会让DeltaT归零
want and now I'll let Delta T go to zero
143
00:09:14,370 --> 00:09:20,485
所以这是最终出现的微积分
so this is calculus appears finally are
144
00:09:20,490 --> 00:09:28,075
我不会说我们的敌人微积分但是
I won't say our enemy calculus but but
145
00:09:28,080 --> 00:09:31,645
有一种类似的竞争
there's a sort of like competition
146
00:09:31,650 --> 00:09:34,765
线性代数与微积分之间的关系
between linear algebra and calculus for
147
00:09:34,770 --> 00:09:40,735
对于大学数学微积分已经有了
for college mathematics calculus has had
148
00:09:40,740 --> 00:09:44,425
这是太多的时间和注意力
far far too much time and attention it's
149
00:09:44,430 --> 00:09:46,855
喜欢它有三到四个学期
like it gets three or four semesters of
150
00:09:46,860 --> 00:09:49,315
微积分给没有得到任何人的人
calculus for people who don't get any
151
00:09:49,320 --> 00:09:51,535
线性代数我很高兴这不会出现
linear algebra I'm glad this won't be on
152
00:09:51,540 --> 00:09:56,305
视频,但我担心它无论如何
the video but I'm afraid it will anyway
153
00:09:56,310 --> 00:09:58,915
当然微积分就好了
of course calculus is fine in its place
154
00:09:58,920 --> 00:10:02,965
好吧所以现在这里的地方让Deltat
okay so here's its place now let Delta t
155
00:10:02,970 --> 00:10:05,245
归零,那么这个等式是什么
go to zero so what does this equation
156
00:10:05,250 --> 00:10:12,565
成为它刚刚结束,每个人都知道
become it just ends and everybody knows
157
00:10:12,570 --> 00:10:15,445
随着极限的ΔT去
that as the limit as delta T goes to
158
00:10:15,450 --> 00:10:20,665
零我更换三角洲的由三角洲如此
zero I replace Delta's by the Delta so
159
00:10:20,670 --> 00:10:23,575
这个Delta除以deltaT有
this Delta a divided by delta T that has
160
00:10:23,580 --> 00:10:26,365
每个顶部都有意义的意思
a meaning each the top has a meaning and
161
00:10:26,370 --> 00:10:29,545
底部有一个平均值,但随后在
the bottom has a mean but then in the
162
00:10:29,550 --> 00:10:33,595
限制它是一个有意义的比例
limit it's a ratio that has a meaning so
163
00:10:33,600 --> 00:10:35,005
da本身
da by itself
164
00:10:35,010 --> 00:10:37,255
我没有附加含义
I don't attach a meaning to that's
165
00:10:37,260 --> 00:10:40,165
无穷小这是极限所以那是
infinitesimal it's the limit so that's
166
00:10:40,170 --> 00:10:42,835
为什么我想要三角洲的delta,所以我
why I wanted a delta over a delta so I
167
00:10:42,840 --> 00:10:45,385
可以做微积分所以现在发生的事情
could do calculus so what happens now as
168
00:10:45,390 --> 00:10:47,785
deltaT变为零,当然也是
delta T goes to zero and of course as
169
00:10:47,790 --> 00:10:50,515
deltaT变为零,携带Delta
delta T goes to zero that carries Delta
170
00:10:50,520 --> 00:10:55,305
a到零,这样就变成了逆
a to zero so that becomes a inverse and
171
00:10:55,310 --> 00:10:59,035
这种方法与deltaT相比如何?
what does this approach as delta T goes
172
00:10:59,040 --> 00:11:00,985
为零
to zero
173
00:11:00,990 --> 00:11:04,295
da/dt用那个减号哦我有
da/dt with that minus sign oh I've got
174
00:11:04,300 --> 00:11:07,774
要记住减号减号是
to remember the minus sign minus sign is
175
00:11:07,779 --> 00:11:11,345
在这里-我带出了减号
in here - I'm bringing out the minus
176
00:11:11,350 --> 00:11:14,615
那么这就像我们所做的那样
sign then this was a inverse as we had
177
00:11:14,620 --> 00:11:21,385
和那个da/dt那是相反的
and that da/dt and that's a inverse
178
00:11:21,390 --> 00:11:27,355
这就是我们的公式一个很好的公式,
that's our formula a nice formula which
179
00:11:27,360 --> 00:11:31,435
某种属于人们的知识
sort of belongs in people's knowledge
180
00:11:31,440 --> 00:11:35,765
你认识到如果a是1比1
you recognize that if a was a 1 by 1
181
00:11:35,770 --> 00:11:40,265
矩阵我们可以称之为X而不是a
matrix we could call it X instead of a
182
00:11:40,270 --> 00:11:45,125
如果a,如果有一个1乘1的矩阵X则
if a if a there's a 1 by 1 matrix X then
183
00:11:45,130 --> 00:11:46,834
我正在看到的公式
I'm seeing the formula for the
184
00:11:46,839 --> 00:11:52,145
X的1的导数写一个逆
derivative of 1 over X write a inverse
185
00:11:52,150 --> 00:11:56,135
只是一个1比1的情况,它只是X超过1所以
just a 1 by 1 case it's just 1 over X so
186
00:11:56,140 --> 00:11:58,655
1或TI的衍生物应该
the derivative of 1 or maybe T I should
187
00:11:58,660 --> 00:12:02,855
如果a只是T那么说
be saying if if a is just T then the
188
00:12:02,860 --> 00:12:06,245
T相对于T的导数为1
derivative of 1 over T with respect to T
189
00:12:06,250 --> 00:12:15,035
我是正方形,是正方形的负1
is is minus 1 over T squared right I've
190
00:12:15,040 --> 00:12:18,125
只是逐个案例,我们知道这是
just the one by one case we know that's
191
00:12:18,130 --> 00:12:20,435
什么是微积分,现在我们能够做到
what calculus does and now we're able to
192
00:12:20,440 --> 00:12:24,454
通过n个案例来做那个就是那个
do that n by n case so that's that's
193
00:12:24,459 --> 00:12:28,985
就像好,然后是先生
just like good and then it's it sir
194
00:12:28,990 --> 00:12:32,735
平行于这样的公式
parallel to formulas like this which are
195
00:12:32,740 --> 00:12:37,115
这个deltaa没有变为0的地方
where this delta a is not gone to 0 it's
196
00:12:37,120 --> 00:12:39,605
全尺寸但低级别
full size but low-rank
197
00:12:39,610 --> 00:12:42,065
这实际上就是公式
that was the point actually the formula
198
00:12:42,070 --> 00:12:43,685
是它会适用,如果排名
would be it would apply if the rank
199
00:12:43,690 --> 00:12:46,865
虽然不低,但利息却很低
wasn't low but the interest is in low
200
00:12:46,870 --> 00:12:47,875
秩
rank