-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy path18-Counting Parameters in SVD, LU, QR, Saddle Points.srt
executable file
·3908 lines (3126 loc) · 79.4 KB
/
18-Counting Parameters in SVD, LU, QR, Saddle Points.srt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1
00:00:01,069 --> 00:00:03,194
以下内容提供
the following content is provided under
2
00:00:03,199 --> 00:00:05,715
CreativeCommons许可您的支持
a Creative Commons license your support
3
00:00:05,720 --> 00:00:08,024
将帮助MITOpenCourseWare继续
will help MIT OpenCourseWare continue to
4
00:00:08,029 --> 00:00:09,855
提供高质量的教育资源
offer high quality educational resources
5
00:00:09,860 --> 00:00:10,935
免费
for free
6
00:00:10,940 --> 00:00:13,125
捐款或查看额外的捐款
to make a donation or to view additional
7
00:00:13,130 --> 00:00:15,165
数百个麻省理工学院课程的材料
materials from hundreds of MIT courses
8
00:00:15,170 --> 00:00:22,295
访问位于ocw.mit.edu的麻省理工学院开放式课件
visit MIT opencourseware at ocw.mit.edu
9
00:00:22,300 --> 00:00:26,265
好的,所以我想我今天就开始了
ok so I thought I'd begin today with as
10
00:00:26,270 --> 00:00:29,054
我们要来排序的结束
we're coming to the end of the sort of
11
00:00:29,059 --> 00:00:32,625
专注于线性代数和移动到
focus on linear algebra and moving on to
12
00:00:32,630 --> 00:00:36,185
一点点概率
a little probability a a little more
13
00:00:36,190 --> 00:00:40,425
优化和很多深刻的
optimization and a a lot of deep
14
00:00:40,430 --> 00:00:43,815
系统的学习,这是像我的方式
learning so this was like my way of
15
00:00:43,820 --> 00:00:47,555
回顾写下大事
review to write down the big
16
00:00:47,560 --> 00:00:52,635
矩阵的因式分解等我的
factorizations of a matrix and so my
17
00:00:52,640 --> 00:00:55,475
想法,它有点喜欢它
idea and it's kind of enjoyed it as
18
00:00:55,480 --> 00:00:58,065
检查一些免费的
checking that a number of free
19
00:00:58,070 --> 00:01:03,285
参数在L&U或q和r或中表示
parameters say in L&U or in q and r or
20
00:01:03,290 --> 00:01:06,525
每个人的每一个人数
every each of those that the number of
21
00:01:06,530 --> 00:01:09,435
自由参数与数字一致
free parameters agrees with the number
22
00:01:09,440 --> 00:01:12,135
其中的参数如N平方
of parameters in a itself like N squared
23
00:01:12,140 --> 00:01:15,945
通常所以通常有N平方和
usually so a usually has N squared and
24
00:01:15,950 --> 00:01:20,355
然后我们可以在我们之后更换一个if
then can we replace a if after we've
25
00:01:20,360 --> 00:01:23,385
计算你可以扔掉一个是的
computed Ln you can we throw away a yes
26
00:01:23,390 --> 00:01:26,805
因为所有信息都在L和
because all the information is in L and
27
00:01:26,810 --> 00:01:31,755
U和它用n矩阵填充相同的n
U and it fills that same n by n matrix
28
00:01:31,760 --> 00:01:35,075
这很明显,因为L是
well that's kind of obvious because L is
29
00:01:35,080 --> 00:01:40,335
下三角形和对角线全部
a lower triangular and the diagonal all
30
00:01:40,340 --> 00:01:43,025
那些没有不自由参数
ones is not are not free parameters and
31
00:01:43,030 --> 00:01:47,325
U是三角形的上三角形和
U is triangular upper triangular and
32
00:01:47,330 --> 00:01:51,044
这是自由的枢轴
it's diagonal the pivots those are free
33
00:01:51,049 --> 00:01:53,595
这样的参数,但我可以写
parameters so that but can I just write
34
00:01:53,600 --> 00:01:56,114
倒数,所以我会经历
down the count so so I'll go through
35
00:01:56,119 --> 00:02:00,614
我这之后很快就完成了这些
each of these just quickly after I've
36
00:02:00,619 --> 00:02:03,974
弄清楚这些是怎样的
figured out how these are the sort of
37
00:02:03,979 --> 00:02:07,754
这个积木有多少免费
the building blocks so how many free
38
00:02:07,759 --> 00:02:10,424
这两个参数都在那里
parameters are there in these two
39
00:02:10,429 --> 00:02:13,425
我觉得三角矩阵很好
triangular matrices well I think the
40
00:02:13,430 --> 00:02:13,915
回答
answer
41
00:02:13,920 --> 00:02:21,285
1/2和n减1和1/2以及n加1
1/2 and n minus 1 and 1/2 and n plus 1
42
00:02:21,290 --> 00:02:25,645
这是一个熟悉的数字,是一些
that's a familiar number that's the some
43
00:02:25,650 --> 00:02:30,355
你认识到这是1的总和
of you recognize that as the sum of 1
44
00:02:30,360 --> 00:02:35,275
加2到n,你有一个免费/
plus 2 up to n and you have one free /
45
00:02:35,280 --> 00:02:37,405
在上三角你
in the in the upper triangular you
46
00:02:37,410 --> 00:02:40,105
你有一个免费参数
you've got one free parameter up in the
47
00:02:40,110 --> 00:02:42,835
在下一个角落2和你一样
corner 2 in the next one and as you're
48
00:02:42,840 --> 00:02:45,475
下来你最终得到了n
coming down you end up with n on the
49
00:02:45,480 --> 00:02:47,935
主对角线,他们加起来
main diagonal and they add up to that
50
00:02:47,940 --> 00:02:51,234
而且你看到那两个是不同的
and you see that those two are different
51
00:02:51,239 --> 00:02:55,225
由n这是我们想要的好
by n which is what we want okay
52
00:02:55,230 --> 00:03:01,044
对比答案明显如何
diagonal the answers obviously in how
53
00:03:01,049 --> 00:03:05,605
关于特征向量矩阵,所以这是
about the eigenvector matrix so this is
54
00:03:05,610 --> 00:03:08,575
这整个练习就像是一件事
this whole exercise is like something
55
00:03:08,580 --> 00:03:10,885
我从来没有在教科书中看过
I've never seen in a textbook in and
56
00:03:10,890 --> 00:03:14,335
它只是但对我来说带回所有
it's just but for me it brings back all
57
00:03:14,340 --> 00:03:21,085
这些关键真的是浓缩的过程
these key really the condensed course in
58
00:03:21,090 --> 00:03:23,665
线性代数是在该顶线,使得
linear algebra is on that top line so
59
00:03:23,670 --> 00:03:25,585
一个多少个免费参数
how many free parameters in an
60
00:03:25,590 --> 00:03:29,145
特征向量矩阵当然可以
eigenvector matrix okay and of course
61
00:03:29,150 --> 00:03:32,965
你是在想什么是规则
you're sort of thinking what's the rule
62
00:03:32,970 --> 00:03:37,734
对于免费参数所以我的答案是
for free parameters so the my answer is
63
00:03:37,739 --> 00:03:40,315
将是免费的数量
going to be for the number of free
64
00:03:40,320 --> 00:03:42,055
参数,所以这是一个N乘n矩阵
parameters so this is an N by n matrix
65
00:03:42,060 --> 00:03:46,495
其中有n个特征向量但是
with the n eigenvectors in it but
66
00:03:46,500 --> 00:03:50,604
那里有一定的自由和什么
there's a certain freedom there and what
67
00:03:50,609 --> 00:03:52,764
是我们拥有的自由
is that what freedom do we have in
68
00:03:52,769 --> 00:03:56,814
每个选择特征向量矩阵
choosing the eigenvector matrix every
69
00:03:56,819 --> 00:03:59,544
特征向量可以乘以a
eigen vector can be multiplied by a
70
00:03:59,549 --> 00:04:04,104
标量如果x是特征向量,则为2x
scalar if x is an eigenvector so is 2x
71
00:04:04,109 --> 00:04:07,555
所以是3倍,所以我们可以做到
so is 3x so we could we could make a
72
00:04:07,560 --> 00:04:09,895
会议第一部分是
convention that the first component was
73
00:04:09,900 --> 00:04:13,104
总是1也许不会是最多的
always 1 maybe that wouldn't be the most
74
00:04:13,109 --> 00:04:16,164
世界上的智能会议但是
intelligent convention in the world but
75
00:04:16,169 --> 00:04:18,734
它会显示那一行的顶行
it would show that that top row of ones
76
00:04:18,739 --> 00:04:22,164
不算数,所以我得到N.
were not to be counted so I get N
77
00:04:22,169 --> 00:04:26,724
平方减去那个哦,好吧
squared minus n for that oh yeah well
78
00:04:26,729 --> 00:04:27,745
做了那些
having done those
79
00:04:27,750 --> 00:04:31,425
-让我让我看看这个
- let me let me look at this at this one
80
00:04:31,430 --> 00:04:34,885
不说出来,总那么平方
does that come out a total then squared
81
00:04:34,890 --> 00:04:38,875
是的,因为特征向量x有N.
yes because the eigenvector x has N
82
00:04:38,880 --> 00:04:42,235
平方减去N乘这个推理小
squared minus n by this reasoning little
83
00:04:42,240 --> 00:04:44,695
hokey推理我刚才给的和
hokey reasoning that I just gave and
84
00:04:44,700 --> 00:04:48,625
然后还有更多的特征值
then there n more for the eigenvalue
85
00:04:48,630 --> 00:04:52,135
矩阵,没有什么可留给的
matrix and there's nothing left for the
86
00:04:52,140 --> 00:04:54,475
因为它是本征的逆
eigen the inverse because it's
87
00:04:54,480 --> 00:04:57,045
由x确定所以你看到计数
determined by x so do you see the count
88
00:04:57,050 --> 00:05:00,835
现在我加起来为n平方
adding up to n squared for those now I
89
00:05:00,840 --> 00:05:03,385
开着正交一个我觉得我们
left open the orthogonal one I think we
90
00:05:03,390 --> 00:05:05,785
那种在谈论期间谈到的那种
kind of talked about that during the
91
00:05:05,790 --> 00:05:10,164
当我们遇到它时,它会少一些
when we met it and it's a little less
92
00:05:10,169 --> 00:05:12,414
显而易见,但你还记得我是吗?
obvious but do you remember so I'm
93
00:05:12,419 --> 00:05:14,275
谈论N乘n正交
talking about an N by n orthogonal
94
00:05:14,280 --> 00:05:19,015
矩阵Q所以有多少自由参数
matrix Q so how many free parameters in
95
00:05:19,020 --> 00:05:22,255
第一列,那列是我们的
column one that that column is what we
96
00:05:22,260 --> 00:05:25,555
总是打电话给Q1它是否有免费结束
always call Q 1 does it have end free
97
00:05:25,560 --> 00:05:27,685
参数或是否有条件
parameters or is there a condition that
98
00:05:27,690 --> 00:05:33,625
削减那些有一个条件
that cuts that back there is a condition
99
00:05:33,630 --> 00:05:35,305
对,什么是条件
right and what's the condition on the
100
00:05:35,310 --> 00:05:38,365
删除一个的第一列
first column that that removes one
101
00:05:38,370 --> 00:05:43,045
参数它的标准化它的长度是
parameter it's normalized it's length is
102
00:05:43,050 --> 00:05:47,755
1所以我只从第一个得到n减1
1 so I only get n minus 1 from the first
103
00:05:47,760 --> 00:05:51,474
专栏,现在如果我转移到
column and now if I move over to the
104
00:05:51,479 --> 00:05:53,485
第二列有多少免费参数
second column how many free parameters
105
00:05:53,490 --> 00:05:57,655
再一次,这是一个单位矢量,但也
there again it's a unit vector but also
106
00:05:57,660 --> 00:06:03,085
它与第一个正交到两个正交
it is orthogonal to the first so to two
107
00:06:03,090 --> 00:06:06,355
参数得到了两个强加的规则
parameters got you two rules got imposed
108
00:06:06,360 --> 00:06:09,235
和两个参数得到去除,这
and two parameters got removed so this
109
00:06:09,240 --> 00:06:12,175
是n减2然后最后是什么
is n minus 2 and then finally whatever
110
00:06:12,180 --> 00:06:15,474
所以我认为那些家伙
so I think that that some of these guys
111
00:06:15,479 --> 00:06:17,905
和我们在这里完全一样
is exactly the same that we had up here
112
00:06:17,910 --> 00:06:23,005
我认为它也是1/2和n减1或
I think it's also 1/2 and n minus 1 or
113
00:06:23,010 --> 00:06:27,775
1/2平方-亚当是的,所以不是
1/2 n squared - Adam yeah yeah so not as
114
00:06:27,780 --> 00:06:30,565
你可能认为很多就像矩阵一样
many as you might think as the matrix is
115
00:06:30,570 --> 00:06:34,395
大小N平方现在可以使用那些
size N squared now can I use those
116
00:06:34,400 --> 00:06:37,855
因为这些就像建筑物一样
because these are the like the building
117
00:06:37,860 --> 00:06:40,945
块我可以看看这些让我们看看
blocks can I just check these let's see
118
00:06:40,950 --> 00:06:44,065
沿着清单L次你这么L
just go along the list L times u so L
119
00:06:44,070 --> 00:06:47,815
有这个,你有,当我添加
had this and you had that and when I add
120
00:06:47,820 --> 00:06:51,235
那些它加起来N平方正确的
those it adds up to N squared right the
121
00:06:51,240 --> 00:06:54,265
减去取消加号和半个N.
minus cancels the plus and the half N
122
00:06:54,270 --> 00:06:57,505
平方两次给我N平方那么好
squared twice gives me N squared so good
123
00:06:57,510 --> 00:06:58,285
那个
for that one
124
00:06:58,290 --> 00:07:03,025
那么QR井R是上层
what about Q R well R is upper
125
00:07:03,030 --> 00:07:08,395
三角形如此然后Q哦是的我们
triangular like so and then Q oh yeah we
126
00:07:08,400 --> 00:07:11,485
只是在那里得到它所以Q次R
just got it right there so for Q times R
127
00:07:11,490 --> 00:07:15,685
这就是Plus再次加入N.
it's that Plus that again adding to N
128
00:07:15,690 --> 00:07:19,315
对那个平方很好并且平方
squared good for that one and squared
129
00:07:19,320 --> 00:07:23,845
对于一个这一次,我们只是做了ñ
for that one this one we just did N
130
00:07:23,850 --> 00:07:27,055
平方减去N和X并且在
squared minus N and X and on the
131
00:07:27,060 --> 00:07:30,055
对角线总N平方怎么样
diagonal total N squared what about this
132
00:07:30,060 --> 00:07:35,575
关于人的大O真正
guy what about the Big O really
133
00:07:35,580 --> 00:07:37,975
我通常会这样做的基本原则
fundamental one that I would normally
134
00:07:37,980 --> 00:07:40,825
将矩阵写为s而不是a
write the matrix as s instead of a to
135
00:07:40,830 --> 00:07:44,515
提醒我们,这里的矩阵
remind us that it that the matrix here
136
00:07:44,520 --> 00:07:50,305
是对称的,所以我不期待看到
is symmetric so I'm not expecting ensk
137
00:07:50,310 --> 00:07:53,545
我应该拥有对称的地方
where'd for a symmetric me I should have
138
00:07:53,550 --> 00:07:54,685
把它放在我的名单上
put that on my list
139
00:07:54,690 --> 00:08:00,195
对称矩阵的计数是多少
what's the count for a symmetric matrix
140
00:08:00,200 --> 00:08:04,975
在这里,所以我不期待得到N.
s here so I'm not expecting to get N
141
00:08:04,980 --> 00:08:07,315
平方我只是期待得到
squared I'm only expecting to get the
142
00:08:07,320 --> 00:08:13,285
对称的数量是多少
number of symmetric s what's the number
143
00:08:13,290 --> 00:08:15,505
自由参数,我会是我
of free parameters that I would that I
144
00:08:15,510 --> 00:08:19,195
从那开始我希望会重新出现
start with that I hope will reappear in
145
00:08:19,200 --> 00:08:25,345
Q和lambda有多少是什么交易
Q and lambda so how many what's the deal
146
00:08:25,350 --> 00:08:30,325
对于一个对称矩阵让我们看看我
for a symmetric matrix let's see I'm
147
00:08:30,330 --> 00:08:33,775
自由选择是相同的计数为
free to choose is it the same count as
148
00:08:33,780 --> 00:08:37,164
这是的,因为我可以自由地选择
this yeah because I'm free to choose the
149
00:08:37,169 --> 00:08:39,925
上三角部分和对角线
upper triangular part and the diagonal
150
00:08:39,930 --> 00:08:42,685
但我不能自由选择较低的
but I'm not free to choose the lower so
151
00:08:42,690 --> 00:08:46,585
所以我说它是n=1的1/2n倍
so I'd say it's 1/2 n times n minus 1
152
00:08:46,590 --> 00:08:53,545
并且加上在那里确定,所以对不起对角线
and plus sorry diagonals in there ok so
153
00:08:53,550 --> 00:08:55,255
我明白了吗
do I get that
154
00:08:55,260 --> 00:09:01,365
这些家伙的N平方加一半加n
half of N squared plus n from these guys
155
00:09:01,370 --> 00:09:05,995
好吧,我可能做对角线的人
well I probably do the diagonal guy
156
00:09:06,000 --> 00:09:09,505
让我在这给了我,那是一个
gives me in this gives me n and that's a
157
00:09:09,510 --> 00:09:13,165
Q这是我最喜欢的号码
Q which is my other favorite number
158
00:09:13,170 --> 00:09:18,805
在那里,当我把它添加到那个
there and when I add that to that that
159
00:09:18,810 --> 00:09:23,155
变成一个加号,我好耶
becomes a plus sign and I'm good yeah
160
00:09:23,160 --> 00:09:26,635
你知道我喜欢这样做但是
you see how I enjoy doing this right but
161
00:09:26,640 --> 00:09:28,665
我快要结束了,但是最后一个
I'm near the end but the last one it's
162
00:09:28,670 --> 00:09:34,785
有点不太知名好的Q时间说
kind of not well known okay Q time says
163
00:09:34,790 --> 00:09:37,255
你还记得那个因素分解
do you remember that factorization
164
00:09:37,260 --> 00:09:39,435
这就是所谓的极性分解
that's a called the polar decomposition
165
00:09:39,440 --> 00:09:43,105
这是一个正交时间a
it's a it's an orthogonal times a
166
00:09:43,110 --> 00:09:46,885
对称的,经常用于
symmetric and it is often used in
167
00:09:46,890 --> 00:09:52,155
工程作为一种分解方法
engineering as a way to decompose a
168
00:09:52,160 --> 00:09:57,955
无论如何,位移或应变矩阵Q.
displacement or strain matrix anyway Q
169
00:09:57,960 --> 00:10:00,745
倍于此,它实际上是非常的
times this and it actually it is very
170
00:10:00,750 --> 00:10:04,105
非常接近SVD,我有朋友
very close to the SVD and I have friends
171
00:10:04,110 --> 00:10:06,925
谁更好地计算Qs而不是
who say better to compute Q s than the
172
00:10:06,930 --> 00:10:11,005
SVD然后只是继续前进Q.
SVD and then just move along anyway Q
173
00:10:11,010 --> 00:10:18,505
这个时候Q就是这个人,而且是什么
times this so Q is this guy and s what's
174
00:10:18,510 --> 00:10:23,325
对称的是这个家伙
s symmetric that's this guy
175
00:10:23,330 --> 00:10:27,145
所以,Q让我写那封信Q.
so that's Q let me write that letter Q
176
00:10:27,150 --> 00:10:29,755
所以我不会失去它
and s so I don't lose it
177
00:10:29,760 --> 00:10:35,265
那些是什么加起来和平方
what are those add up to and squared
178
00:10:35,270 --> 00:10:41,305
快乐好,所以最后SVD友好了
happy ok so finally the SVD friendly the
179
00:10:41,310 --> 00:10:44,035
SVD是什么计数
SVD what's the count
180
00:10:44,040 --> 00:10:45,925
好吧现在我不知道我有
well now I don't know I've got
181
00:10:45,930 --> 00:10:48,895
那里有长方形的东西,所以我有
rectangular stuff in there so I've got
182
00:10:48,900 --> 00:10:52,975
我准备好了这个,我必须这样做
to I'm ready for this one and I have to
183
00:10:52,980 --> 00:10:55,675
觉得有点
think a little bit
184
00:10:55,680 --> 00:11:01,345
我们可能已经这样做了所以我拥有了
and we may have done this so I have I
185
00:11:01,350 --> 00:11:06,265
让我们假设M等于M
let's suppose that M is lesser equal M
186
00:11:06,270 --> 00:11:11,525
假设它是,否则我们
suppose that it is yeah otherwise we
187
00:11:11,530 --> 00:11:14,045
只会转置并查看SVD
would just transpose and look at the SVD
188
00:11:14,050 --> 00:11:17,675
所以让我们说M小于或等于n所以让我们来吧
so let's say M less or equal n so let's
189
00:11:17,680 --> 00:11:22,745
说它有完整的排名,是什么
say it's got full rank and what's the
190
00:11:22,750 --> 00:11:26,735
矩阵可以具有M的最大等级
largest rank that the matrix can have M
191
00:11:26,740 --> 00:11:32,135
显然满级M所以SVD将是M.
clearly full rank M so the SVD will be M
192
00:11:32,140 --> 00:11:37,745
由M让我们记住你的
by M let's remember the the you the
193
00:11:37,750 --> 00:11:41,675
Sigma和V转置这将是M
Sigma and the V transpose this will be M
194
00:11:41,680 --> 00:11:46,295
通过n,这将是n乘以n
by n and this will be n by n for the
195
00:11:46,300 --> 00:11:49,205
满刻度这个VD,如果排名是
full scale this VD and if the rank is
196
00:11:49,210 --> 00:11:55,235
等于M然后我真的希望得到我
equal to M then I really expect to get I
197
00:11:55,240 --> 00:11:58,885
期望它加起来总和
expect it to add up to the total for a
198
00:11:58,890 --> 00:12:06,875
对于原始的a有MN的权利
for a the original a has MN right it's
199
00:12:06,880 --> 00:12:14,395
在M×n矩阵中,矩阵a是M乘以n
an M by n matrix the matrix a is M by n
200
00:12:14,400 --> 00:12:18,305
与他们在给予我的方面较少或相等
with them less or equal in giving me