-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdeepspeech2_model.py
201 lines (159 loc) · 7.49 KB
/
deepspeech2_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
from dataclasses import dataclass
from typing import Optional
import torch
from torch import nn
from evaluate import load as load_metric
import lightning as L
import pyctcdecode
from utils import describe_model_size
from vocab import Vocab
from tokenizer import Tokenizer
@dataclass
class DeepSpeech2Config:
n_mels: int # Number of mel filterbanks
hidden_units: int # Number of RNN hidden units
tokenizer: Tokenizer
# TODO -> Improve config classes
learning_rate: float = 1e-4
class CNNLayer(nn.Module):
"""CNN + Batch Normalization"""
def __init__(self, in_channels, out_channels, kernel_size, stride, padding=0):
super(CNNLayer, self).__init__()
self.cnn = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding)
self.batch_norm = nn.BatchNorm2d(num_features=out_channels)
self.activation = nn.Hardtanh()
def _calc_new_sequence_length(self, sequence_lengths: torch.IntTensor):
""" Calculates output senquence lengths based on CNN receptive field. """
p = self.cnn.padding[1]
f = self.cnn.kernel_size[1]
s = self.cnn.stride[1]
sequence_lengths = (sequence_lengths + (2 * p) - f) // s + 1
return sequence_lengths
def forward(self, features, sequence_lengths: torch.IntTensor):
sequence_lengths = self._calc_new_sequence_length(sequence_lengths)
x = features # (batch_size, in_channels, features, time)
x = self.cnn(x) # (batch_size, out_channels, features, time)
x = self.batch_norm(x)
x = self.activation(x)
return x, sequence_lengths
class RNNLayer(nn.Module):
"""RNN + Layer Normalization"""
def __init__(self, in_features, hidden_units):
super(RNNLayer, self).__init__()
self.rnn = nn.LSTM(in_features, hidden_units, batch_first=True, bidirectional=True)
self.layer_norm = nn.LayerNorm(2 * hidden_units)
def forward(self, features, sequence_lengths: torch.IntTensor):
x = features # (batch_size, time, in_features)
# Packed RNN
rnn_input = nn.utils.rnn.pack_padded_sequence(x, sequence_lengths.cpu(), batch_first=True)
rnn_output, _hidden_states = self.rnn(rnn_input)
x, _ = nn.utils.rnn.pad_packed_sequence(rnn_output, total_length=x.shape[1], batch_first=True)
x = self.layer_norm(x) # (batch_size, time, 2 * hidden_units)
return x
class DeepSpeech2(nn.Module):
"""Deep Speech 2.0 Speech Recognition Model"""
def __init__(self, config: DeepSpeech2Config):
super(DeepSpeech2, self).__init__()
self.config = config
# CNN Layers
self.cnn_layers = nn.ModuleList([
CNNLayer(1, 32, kernel_size=(11, 11), stride=(2, 2)),
CNNLayer(32, 32, kernel_size=(11, 11), stride=(1, 1), padding=(5, 0)),
CNNLayer(32, 96, kernel_size=(11, 11), stride=(1, 1), padding=(5, 0)),
])
self.n_features = (self.config.n_mels - 11) // 2 + 1 # Number of features after CNN layers
# RNN Layers
self.rnn_layers = nn.ModuleList([
RNNLayer(
in_features=96 * self.n_features if i == 0 else 2 * self.config.hidden_units,
hidden_units=self.config.hidden_units
) for i in range(6)
])
# Classifier
self.classifier = nn.Sequential(
nn.Linear(2 * self.config.hidden_units, self.config.hidden_units),
nn.Hardtanh(),
nn.Linear(self.config.hidden_units, len(self.config.tokenizer.vocab))
)
def forward(
self,
features: torch.FloatTensor,
sequence_lengths: torch.IntTensor # Sorted in decreasing order
) -> torch.FloatTensor:
x = features # (batch_size, features, time)
x = x.unsqueeze(1) # (batch_size, 1, features, time)
# Apply CNN layers
for cnn_layer in self.cnn_layers:
x, sequence_lengths = cnn_layer(x, sequence_lengths)
x = x.view(x.shape[0], x.shape[1] * x.shape[2], x.shape[3]) # (batch_size, 96 * n_features, time)
x = x.transpose(1, 2) # (batch_size, time, 96 * n_features)
# Apply RNN layers
for rnn_layer in self.rnn_layers:
x = rnn_layer(x, sequence_lengths) # (batch_size, time, 2 * hidden_units)
logits = self.classifier(x) # (batch_suze, time, n_vocab)
return logits, sequence_lengths
@dataclass
class DeepSpeechOutput:
logits: Optional[torch.Tensor] = None
loss: Optional[torch.Tensor] = None
metrics: Optional[dict[str, float]] = None
class LightDeepSpeech2(L.LightningModule):
"""A Lightning Wrapper Over Deep Speech 2"""
def __init__(self, config: DeepSpeech2Config):
super().__init__()
self.save_hyperparameters()
self.config = config
self.asr_model = DeepSpeech2(config)
self.wer_metric = load_metric("wer")
self.cer_metric = load_metric("cer")
def forward(self, batch: dict[str, torch.Tensor], with_metrics: bool = False) -> DeepSpeechOutput:
# Forward pass
batch = {k:v.to(self.device) for k,v in batch.items()}
logits, sequence_lengths = self.asr_model(batch['features'], batch['sequence_lengths']) # (batch_size, time, n_vocab), (batch_size)
loss = None
metrics = None
if 'labels' in batch:
log_probs = nn.functional.log_softmax(logits, dim=-1).transpose(0, 1) # (time, batch_size, n_vocab)
loss_fn = nn.CTCLoss(self.config.tokenizer.vocab.blank_idx(), zero_infinity=True)
loss = loss_fn(log_probs, batch['labels'], sequence_lengths, batch['label_lengths'])
# Compute metrics
if with_metrics:
metrics = self.compute_metrics(logits, batch['labels'])
return DeepSpeechOutput(logits=logits, loss=loss, metrics=metrics)
def training_step(self, batch: dict[str, torch.Tensor], _batch_idx):
asr_output = self.forward(batch)
self.log('train_loss', asr_output.loss)
return asr_output.loss
def validation_step(self, batch: dict[str, torch.Tensor], _batch_idx):
asr_output = self.forward(batch, with_metrics=True)
self.log("val_loss", asr_output.loss, prog_bar=True)
for metric_name, metric_value in asr_output.metrics.items():
self.log(f"val_{metric_name}", metric_value, prog_bar=True)
def compute_metrics(self, logits: torch.Tensor, labels: torch.Tensor):
# Decode labels
labels = labels.cpu().numpy()
labels = self.config.tokenizer.decode(labels)
# Decode predictions (Greedy decoding)
vocab_list = self.config.tokenizer.vocab.idx_to_char
ctc_decoder = pyctcdecode.build_ctcdecoder(vocab_list)
batch_logits = logits.detach().cpu().numpy()
preds = [ctc_decoder.decode(logits, beam_width=1) for logits in batch_logits]
return {
'wer': self.wer_metric.compute(predictions=preds, references=labels),
'cer': self.cer_metric.compute(predictions=preds, references=labels)
}
def configure_optimizers(self):
optimizer = torch.optim.Adam(self.parameters(), lr=self.config.learning_rate)
lr_scheduler = {
'scheduler': torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma=0.98)
}
return [optimizer], [lr_scheduler]
if __name__ == '__main__':
vocab = Vocab.from_json('deepspeech2_vocab.json')
tokenizer = Tokenizer(vocab)
config = DeepSpeech2Config(
n_mels=80,
hidden_units=384,
tokenizer=tokenizer,
)
describe_model_size(DeepSpeech2(config))