forked from alisw/POWHEG
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathintegrator.f
671 lines (652 loc) · 21.6 KB
/
integrator.f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
c Integrator-Unweighter Package for POWHEG;
c Documented in arXiv:0709.2085: MINT: A Computer program for adaptive Monte Carlo
c integration and generation of unweighted distributions.
c Variations with respect to the version documented in the manual may be present
c here, and illustrated in the comments.
c In this version, no internal state variables are present (i.e. all internal
c state variables must be passed as arguments). In this way, one can use mint
c and gen for the integration-generation of different functions, provided
c the arguments are kept different.
c
subroutine mint(fun,ndim,ncalls,nitmax,ifold,imode,iun,
# xgrid,xint,xacc,nhits,ymax,ymaxrat,ans,err)
c returns the function to be integrated multiplied by www;
c xx(1:ndim) are the variables of integration
c ifirst=0: normal behaviour
c ifirst=1 and 2: see the explanation of ifold
c
c ndim=number of dimensions
c
c ncalls =# of calls per iteration
c
c nitmax =# of iterations
c
c ifold(ndim)
c If some number in the array ifold, (say, ifold(n))
c is different from 1, it must be a divisor of 50, and the 50 intervals xgrid(0:50,n)
c are grouped into ifold(n) groups, each group containing 50/ifold(n) nearby
c intervals. For example, if ifold(1)=5, the 50 intervals for the first dimension
c are divided in 5 groups of 10. The integral is then performed by folding on top
c of each other these 5 groups. Suppose, for example, that we choose a random point
c in xx(1) = xgrid(2,1)+x*(xgrid(3,1)-xgrid(2,1)), in the group of the first 5 interval.
c we sum the contribution of this point to the contributions of points
c xgrid(2+m*10,1)+x*(xgrid(3+m*10,1)-xgrid(2+m*10,1)), with m=1,...,4.
c ifirst=0,1,2
c In the folded sequence of calls to the
c function fun, the call for the first point is performed with ifirst=0, and that for
c all subsequent points with ifirst=1, so that the function can avoid to compute
c quantities that only depend upon dimensions that have ifold=1, and do not change
c in each group of folded call. The values returned by fun in a sequence of folded
c calls with ifirst=0 and ifirst=1 are not used. The function itself must accumulate
c the values, and must return them when called with ifirst=2.
c
c imode: integer flag
c imode=0:
c When called with imode=0 the routine integrates the absolute value of the function
c and sets up a grid xgrid(0:50,ndim) such that in each ndim-1 dimensional slice
c (i.e. xgrid(m-1,n)<xx(n)<xgrid(m,n)) the contribution of the integral is the same
c the array xgrid is setup at this stage; ans and err are the integral and its error.
c No folding is allowed at this stage;
c imode=1 (in fact #0)
c When called with imode=1, the routine performs the integral of the function fun
c using the grid xgrid. Folding, if present, is used at this stage. The upper bounding
c envelope of the function is set up, so as to allow event generation by gen.
c
c xgrid(0:nintervals,ndim)
c integration grid; initialized and updated with the call to mint with imode=0
c
c xint: real
c Output value of the integral when called with imode=0,
c input value of the integral when called with imode=1 (cannot be zero here!)
c
c xacc(0:nintervals,ndim):
c distribution of the accumulated value for each dimension; it is used to compute the optimal grid.
c So, the sum of the array at fixed ndim is the total accumulated value
c
c nhits(0:nintervals,ndim):
c distribution of number of hits for each dimension; it is used to compute the optimal grid
c
c ymax(nintervals,ndim):
c integrand upper bounds, set up by mint when called with imode=1, to be used
c by the subroutine gen for the generation of unweighted events
c
c ans: real
c Output value of the integral (both imode=0 and imode=1)
c
c err: real
c Output value of the error on the integral
c
implicit none
integer nintervals,ndimmax
include 'nlegborn.h'
include 'pwhg_flg.h'
parameter (nintervals=50,ndimmax=ndiminteg)
integer ncalls,ndim,nitmax,imode,iun
real * 8 xgrid(0:nintervals,ndim),xint,ymax(nintervals,ndim),
1 ymaxrat(nintervals,ndim),ans,err
real * 8 x(ndimmax),vol
real * 8 xacc(0:nintervals,ndim)
integer icell(ndimmax),ncell(ndimmax)
integer ifold(ndimmax),kfold(ndimmax)
integer nhits(1:nintervals,ndimmax)
real * 8 rand(ndimmax)
real * 8 dx(ndimmax),f,vtot,etot,prod,vfun,vfun0,prodrat
integer kdim,kint,kpoint,nit,ibin,iret,nintcurr,ifirst
real * 8 random,powheginput
logical pwhg_isfinite,gridinfo,fixedgrid,ini
integer fun,ifun
external random,pwhg_isfinite,fun,powheginput
data ini/.true./
save fixedgrid,ini
if(ini) then
fixedgrid = powheginput('#fixedgrid').eq.1
ini = .false.
endif
c integer k
c real * 8 tmp
c data tmp/-1d0/
c save tmp
if(ndim.gt.ndiminteg) then
write(*,*) 'Mint: at most ',ndiminteg,' dimensions'
write(*,*) 'Got ',ndim
call exit(-1)
endif
if(imode.eq.0) then
do kdim=1,ndim
ifold(kdim)=1
enddo
elseif(imode.eq.1) then
do kdim=1,ndim
nintcurr=nintervals/ifold(kdim)
if(nintcurr*ifold(kdim).ne.nintervals) then
write(*,*)
1 'mint: the values in the ifold array shoud be divisors of',
2 nintervals
stop
endif
do kint=1,nintcurr
ymax(kint,kdim)=
1 xint**(1d0/ndim)
ymaxrat(kint,kdim)=1
enddo
enddo
endif
cc If you know there is a problem at btilde call 862478, for
cc debugging uncomment the following:
c if(tmp.lt.0) then
c write(*,*) ' ramping up random()'
c do k=1,862477
c do kdim=1,ndim
c tmp = random()
c tmp = random()
c enddo
c enddo
c write(*,*) ' finished ramping up random()'
c endif
c write(*,*) ' entering mint'
nit=0
ans=0
err=0
10 continue
nit=nit+1
11 continue
if(nit.gt.nitmax) then
if(imode.eq.0) xint=ans
return
endif
if(imode.eq.0) then
do kdim=1,ndim
do kint=0,nintervals
xacc(kint,kdim)=0
if(kint.gt.0) then
nhits(kint,kdim)=0
endif
enddo
enddo
endif
vtot=0
etot=0
do kpoint=1,ncalls
c if a NaN is found, go back here to repeat
12 continue
c find random x, and its random cell
do kdim=1,ndim
kfold(kdim)=1
ncell(kdim)=nintervals/ifold(kdim)*random()+1
rand(kdim)=random()
enddo
f=0
ifirst=0
1 continue
vol=1
do kdim=1,ndim
nintcurr=nintervals/ifold(kdim)
icell(kdim)=ncell(kdim)+(kfold(kdim)-1)*nintcurr
ibin=icell(kdim)
dx(kdim)=xgrid(icell(kdim),kdim)-xgrid(icell(kdim)-1,kdim)
vol=vol*dx(kdim)*nintcurr
x(kdim)=xgrid(icell(kdim)-1,kdim)+rand(kdim)*dx(kdim)
if(imode.eq.0) nhits(ibin,kdim)=nhits(ibin,kdim)+1
enddo
c contribution to integral
if(imode.eq.0) then
ifun = fun(x,vol,ifirst,1,vfun,vfun0)
c If you get NaN or Inf, skip this value
if(.not.pwhg_isfinite(vfun)) goto 12
ifun = fun(x,vol,2,1,vfun,vfun0)
f=vfun
if(.not.pwhg_isfinite(f)) goto 12
else
c this accumulated value will not be used
ifun = fun(x,vol,ifirst,1,vfun,vfun0)
if(.not.pwhg_isfinite(vfun)) goto 12
ifirst=1
call nextlexi(ndim,ifold,kfold,iret)
if(iret.eq.0) goto 1
c closing call: accumulated value with correct sign
ifun = fun(x,vol,2,1,vfun,vfun0)
if(.not.pwhg_isfinite(f)) goto 12
f=vfun
endif
c
if(imode.eq.0) then
c accumulate the function in xacc(icell(kdim),kdim) to adjust the grid later
do kdim=1,ndim
xacc(icell(kdim),kdim)=xacc(icell(kdim),kdim)+f
enddo
else
c update the upper bounding envelope. In case multiple runs are performed, the
c results of the call in the cell is stored in a file, to be processed later
c to find the upper bounding envelope
if(flg_storemintupb) then
if(flg_fastbtlbound.and.ifun.eq.0) then
call storemintupb(ndim,ncell,0,f,vfun0)
else
call storemintupb(ndim,ncell,1,f,vfun0)
endif
else
prod=1
if(flg_fastbtlbound.and.ifun.eq.0) prodrat=1
do kdim=1,ndim
prod=prod*ymax(ncell(kdim),kdim)
if(ifun.eq.0)
1 prodrat=prodrat*ymaxrat(ncell(kdim),kdim)
enddo
prod=(f/prod)
if(flg_fastbtlbound.and.ifun.eq.0) then
if(vfun0.ne.0.and.prodrat.ne.0) then
prodrat=(f/vfun0/prodrat)
else
c This should not really happen unless f is also zero; putting a warning
c here may be dangerouse, though
if(f.ne.0) then
call increasecnt(
1 "Integrator: f#0, prodrat*vfun0=0")
endif
prodrat=0
endif
endif
if(prod.gt.1) then
c This guarantees a 10% increase of the upper bound in this cell
prod=1+0.1d0/ndim
do kdim=1,ndim
ymax(ncell(kdim),kdim)=ymax(ncell(kdim),kdim)
1 * prod
enddo
endif
if(flg_fastbtlbound.and.ifun.eq.0) then
if(prodrat.gt.1) then
c This guarantees a 10% increase of the upper bound in this cell
prodrat=1+0.1d0/ndim
do kdim=1,ndim
ymaxrat(ncell(kdim),kdim)=
1 ymaxrat(ncell(kdim),kdim) * prodrat
enddo
endif
endif
endif
endif
vtot=vtot+f/ncalls
etot=etot+f**2/ncalls
enddo
c the abs is to avoid tiny negative values
etot=sqrt(abs(etot-vtot**2)/ncalls)
write(*,*) vtot,etot
if(nit.eq.1) then
ans=vtot
err=etot
else
c prevent annoying division by zero for nearly zero
c integrands
if(etot.eq.0.and.err.eq.0) then
if(ans.eq.vtot) then
goto 10
else
err=abs(vtot-ans)
etot=abs(vtot-ans)
endif
elseif(etot.eq.0) then
etot=err
elseif(err.eq.0) then
err=etot
endif
c The following formulae are such that by doing nitmax iterations
c with ncalls call the result is exactly equivalent to do 1 iteration with
c nitmax*ncalls calls.
err=sqrt((err**2*(nit-1)**2+etot**2)/nit**2
1 +(nit-1)*(ans-vtot)**2/(ncalls*nit**3))
ans=((nit-1)*ans+vtot)/nit
endif
if(imode.eq.0.and..not.fixedgrid) then
do kdim=1,ndim
call regrid(xacc(0,kdim),xgrid(0,kdim),
1 nhits(1,kdim),kdim,nintervals)
enddo
endif
goto 10
end
subroutine regridplotopen(filename)
implicit none
character *(*) filename
integer iun
logical iunopen
common/cregrid/iun,iunopen
data iunopen/.false./
call newunit(iun)
open(unit=iun,file=filename,status='unknown')
iunopen=.true.
end
subroutine regridplotclose
implicit none
integer iun
logical iunopen
common/cregrid/iun,iunopen
close(iun)
iunopen=.false.
end
subroutine regrid(xacc0,xgrid,nhits,kdim,nint)
implicit none
integer nint,nhits(nint),kdim,nit
real * 8 xacc(0:nint),xacc0(0:nint),xgrid(0:nint)
integer nintervals
parameter (nintervals=50)
real * 8 xn(nintervals),r
integer kint,jint
integer iun
logical iunopen
common/cregrid/iun,iunopen
xacc = xacc0
do kint=1,nint
c xacc (xerr) already contains a factor equal to the interval size
c Thus the integral of rho is performed by summing up
if(nhits(kint).ne.0) then
xacc(kint)= xacc(kint-1)
# + abs(xacc(kint))/nhits(kint)
else
xacc(kint)=xacc(kint-1)
endif
enddo
c If there is no value, keep old grid!
if(xacc(nint).eq.0) return
do kint=1,nint
xacc(kint)=xacc(kint)/xacc(nint)
enddo
if(iunopen) then
write(iun,*) 'set limits x 0 1 y 0 1'
write(iun,*) ' title top "dim=',kdim,'"'
write(iun,*) 0, 0
do kint=1,nint
write(iun,*) xgrid(kint),xacc(kint)
enddo
write(iun,*) 'join 0'
endif
do kint=1,nint
r=dble(kint)/nint
if(iunopen) then
write(iun,*) 0, r
write(iun,*) 1, r
write(iun,*) ' join'
endif
do jint=1,nint
if(r.lt.xacc(jint)) then
xn(kint)=xgrid(jint-1)+(r-xacc(jint-1))
1 /(xacc(jint)-xacc(jint-1))*(xgrid(jint)-xgrid(jint-1))
goto 11
endif
enddo
if(jint.ne.nint+1.and.kint.ne.nint) then
write(*,*) ' error',jint,nint
stop
endif
xn(nint)=1
11 continue
enddo
do kint=1,nint
xgrid(kint)=xn(kint)
enddo
if(iunopen) then
do kint=1,nint
write(iun,*) xgrid(kint), 0
write(iun,*) xgrid(kint), 1
write(iun,*) ' join'
enddo
write(iun,*) ' newplot'
endif
end
subroutine nextlexi(ndim,iii,kkk,iret)
c kkk: array of integers 1 <= kkk(j) <= iii(j), j=1,ndim
c at each call iii is increased lexicographycally.
c for example, starting from ndim=3, kkk=(1,1,1), iii=(2,3,2)
c subsequent calls to nextlexi return
c kkk(1) kkk(2) kkk(3) iret
c 0 calls 1 1 1 0
c 1 1 1 2 0
c 2 1 2 1 0
c 3 1 2 2 0
c 4 1 3 1 0
c 5 1 3 2 0
c 6 2 1 1 0
c 7 2 1 2 0
c 8 2 2 1 0
c 9 2 2 2 0
c 10 2 3 1 0
c 11 2 3 2 0
c 12 2 3 2 1
implicit none
integer ndim,iret,kkk(ndim),iii(ndim)
integer k
k=ndim
1 continue
if(kkk(k).lt.iii(k)) then
kkk(k)=kkk(k)+1
iret=0
return
else
kkk(k)=1
k=k-1
if(k.eq.0) then
iret=1
return
endif
goto 1
endif
end
subroutine gen(fun,ndim,xgrid,ymax,ymaxrat,xmmm,ifold,
# imode,mcalls,icalls,x)
c Subroutine to generated x(ndim) point distributed
c according to the function fun.
c
c fun: same as in mint
c
c ndim: same as in mint
c
c xgrid: same as in mint
c
c xmmm(nintervals,ndim):
c internal array, initialized when
c called with imode=0
c
c ifold: same as in mint
c
c imode:
c imode=0 to initialize
c imode=1 to generate
c imode=2 to generate with a single try (don't use hit and miss).
c This is used for reweighting.
c imode=3 store generation efficiency in x(1)
c
c mcalls:
c current number of calls with imode=1
c
c icalls
c current number of calls to the function fun
c
c x(ndim)
c the returned coordinate vector of the generated point
implicit none
integer ndim,imode
integer nintervals,ndimmax
include 'nlegborn.h'
include 'pwhg_rad.h'
include 'pwhg_flg.h'
parameter (nintervals=50,ndimmax=ndiminteg)
integer fun
real * 8 xgrid(0:nintervals,ndim),
1 ymax(nintervals,ndim),ymaxrat(nintervals,ndim),x(ndim)
real * 8 dx(ndimmax)
integer icell(ndimmax),ncell(ndimmax)
integer ifold(ndimmax),kfold(ndimmax)
real * 8 r,f,ubound,vol,vfun,vfun0,random,xmmm(nintervals,ndimmax)
real * 8 rand(ndimmax),ub,fsu,f0
logical savelogical,pwhg_isfinite
external fun,random,pwhg_isfinite
integer icalls,mcalls,kdim,kint,nintcurr,iret,ifirst,istep,ifun
integer gen_seed,gen_n1,gen_n2
common/cgenrand/gen_seed,gen_n1,gen_n2
c use these to provide an estimate of the cross section while generating an event
real * 8 sigma, sigma2, rweight
integer isigma
common/gencommon/sigma,sigma2,isigma
sigma = 0
sigma2 = 0
isigma = 0
if(ndim.gt.ndiminteg) then
write(*,*) 'Mint: at most ',ndiminteg,' dimensions'
write(*,*) 'Got ',ndim
call exit(-1)
endif
if(imode.eq.0) then
do kdim=1,ndim
nintcurr=nintervals/ifold(kdim)
xmmm(1,kdim)=ymax(1,kdim)
do kint=2,nintcurr
xmmm(kint,kdim)=xmmm(kint-1,kdim)+
# ymax(kint,kdim)
enddo
do kint=1,nintcurr
xmmm(kint,kdim)=xmmm(kint,kdim)/xmmm(nintcurr,kdim)
enddo
enddo
icalls=0
mcalls=0
return
elseif(imode.eq.3) then
if(icalls.gt.0) then
x(1)=dble(mcalls)/icalls
else
x(1)=-1
endif
return
endif
mcalls=mcalls+1
c this is the main hit and miss loopo
10 continue
isigma = isigma + 1
11 continue
c save random status for each iteration
call readcurrentrandom(gen_seed,gen_n1,gen_n2)
rweight = 1
do kdim=1,ndim
nintcurr=nintervals/ifold(kdim)
r=random()
do kint=1,nintcurr
if(r.lt.xmmm(kint,kdim)) then
ncell(kdim)=kint
if(kint == 1) then
rweight = rweight * xmmm(kint,kdim)
1 * nintcurr
else
rweight = rweight
1 * ( xmmm(kint,kdim) - xmmm(kint-1,kdim) )
1 * nintcurr
endif
goto 1
endif
enddo
1 continue
rand(kdim)=random()
enddo
ubound=1
do kdim=1,ndim
ubound=ubound*ymax(ncell(kdim),kdim)
enddo
fsu=ubound
do kdim=1,ndim
kfold(kdim)=1
enddo
ub=ubound*random()
c The block from here to <go to 4> is to be executed
c twice in the computation,
c the first time to compute the 'avatar' function (istep=0), the second
c to compute the full contribution (istep=1).
c If imode=2, only the full contribution is needed
if(flg_fastbtlbound.and.imode.ne.2) then
istep=0
else
istep=1
endif
4 continue
f=0
ifirst=0
5 continue
vol=1
do kdim=1,ndim
nintcurr=nintervals/ifold(kdim)
icell(kdim)=ncell(kdim)+(kfold(kdim)-1)*nintcurr
dx(kdim)=xgrid(icell(kdim),kdim)-xgrid(icell(kdim)-1,kdim)
vol=vol*dx(kdim)*nintervals/ifold(kdim)
x(kdim)=xgrid(icell(kdim)-1,kdim)+rand(kdim)*dx(kdim)
enddo
ifun = fun(x,vol,ifirst,istep,vfun,vfun0)
c if ifun is nonzero the function does not support the avatar function;
c do only one iteration
if(ifun.ne.0) istep = 1
if(.not.pwhg_isfinite(vfun)) goto 10
f=f+vfun
ifirst=1
call nextlexi(ndim,ifold,kfold,iret)
if(iret.eq.0) goto 5
c get final value (x and vol not used in this call)
ifun = fun(x,vol,2,istep,vfun,vfun0)
f = vfun
if(imode.eq.2) then
return
endif
if(istep.eq.0) then
if(.not.flg_bornonly) then
ubound=f
do kdim=1,ndim
ubound=ubound*ymaxrat(ncell(kdim),kdim)
enddo
c ubound is now an upper bound on the full (not avatar) f;
c if it fails the hit and miss, f also fails
if(ub.gt.ubound) goto 10
c now go back to compute the full f, if required
istep=1
c if we got up to here we will be exiting the 4 loop after
c the computation of the istep=1 f.
c The distribution generated up to this point is the
c minimum between the product of f at istep=0 times ymaxrat
c and fsu (that is to say ymax). We reset fsu to this minimum
c to check later for bound violations
rweight = rweight * min(ubound,fsu) / fsu
fsu = min(ubound,fsu)
goto 4
endif
endif
if(.not.pwhg_isfinite(f)) goto 11
if(f.lt.0) then
write(*,*) 'gen: non positive function',f
c f=fun(x,vol,2)
c stop
endif
if(f.gt.fsu) then
rad_genubexceeded = f/fsu
call monitorubound(f/fsu,icalls)
call increasecnt
1 ('upper bound failure in inclusive cross section')
else
rad_genubexceeded = 1
endif
sigma = sigma + f/rweight
sigma2 = sigma2 + (f/rweight)**2
icalls=icalls+1
if(ub.gt.f) then
call increasecnt
# ('vetoed calls in inclusive cross section')
goto 10
endif
end
subroutine initxgrid(xgrid,ndim)
implicit none
integer nintervals,ndimmax
include 'nlegborn.h'
parameter (nintervals=50,ndimmax=ndiminteg)
real * 8 xgrid(0:nintervals,ndim)
integer kdim,ndim,kint
do kdim=1,ndim
do kint=0,nintervals
xgrid(kint,kdim)=dble(kint)/nintervals
enddo
enddo
end