-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathconfig.yaml
99 lines (80 loc) · 3.05 KB
/
config.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
########################################################################################################################
# RASCAL Configuration file #
# #
# contact: alvaro@intermet.es #
########################################################################################################################
# Total period that spans the reanalysis data
initial_year: 2005
final_year: 2013
# Training period: Period to use to calculate the PCA and the seasonal mean for the anomalies.
training_start: [2006, 1, 1]
training_end: [2013, 12, 31]
# Reconstruction period: Period to reconstruct.
reconstruction_start: [2005, 1, 1]
reconstruction_end: [2013, 12, 31]
# Input paths
reanalysis_path: "./data/reanalysis/ERA5/"
observations_path: "./data/observations/"
# Output paths
pca_path: './pca/'
temporal_files_path: "./tmp/"
output_path: "./output/"
plot_path: "./plots/"
# Stations
stations:
- "St03"
# Variables to reconstruct
variables:
- "TMEAN"
- "TMAX"
- "TMIN"
# Synoptic predictor
predictor_lat_min: 30
predictor_lat_max: 50
predictor_lon_min: -30
predictor_lon_max: 5
predictor_grouping: "00hour_1D_mean"
grouping_per_variable:
TMEAN: "1D_mean"
TMAX: "1D_max"
TMIN: "1D_min"
PCP: "1D_sum"
predictor_for_variable:
TMEAN: [ '925_Z' ]
TMAX: [ '925_Z' ]
TMIN: [ '925_Z' ]
PCP: [ 'SURF_71.162', 'SURF_72.162' ]
overwrite_predictor: True
# Quantile Mapping Variable
mapping_variables_for_variable:
TMEAN: [ 'SURF_T']
TMAX: [ 'SURF_T']
TMIN: [ 'SURF_T']
PCP: [ 'SURF_71.162', 'SURF_72.162' ]
########################################################################################################################
# Principal Component Analysis #
########################################################################################################################
seasons:
- [12, 1, 2]
- [3, 4, 5]
- [6, 7, 8]
- [9, 10, 11]
standardize_anomalies: True
n_components: 4
pca_scaling: 1
# 0 : Un-scaled PCs.
# 1 : PCs are scaled to unit variance (divided by the square-root of their eigenvalue) (default).
# 2 : PCs are multiplied by the square-root of their eigenvalue.
overwrite_pcs: True
########################################################################################################################
# Analog method #
########################################################################################################################
analog_pool_size: [20, 50, 100]
weighted_mean_sample_size: [2, 5, 10]
distance: 'euclidean'
validation_window_size: 0
validation_window_type: 'centered'
similarity_methods:
- 'closest'
- 'average'
- 'quantilemap'