-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathrtl_zwave.cpp
479 lines (411 loc) · 13.2 KB
/
rtl_zwave.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
#include<stdio.h>
#include<complex>
#include <unistd.h>
using namespace std;
extern void write_wiresark(unsigned char *f, unsigned char len, int speed);
extern int open_wirreshark();
void zwave_print(unsigned char* data, int len)
{
for (int i = 0; i < len; i++)
{
printf("%.2x", data[i]);
}
printf("\n");
}
/*
Algorithm
The input signal is on the form s(t) = a*exp(-i*w*t+p)
where a is the amplitude
w if the angular frequncy, (in reality w is a function of t but we will ignore that)
p if the phase difference
We wish to find w...
First we take the time derivative(s') of s
s' = -i(w)*a*exp(-i*w*t+p)
then we multiply s' by by conj(s) where conj is complex conjugation
s'*conj(s) = -i(w)*a*exp(-i*w*t+p)*a*exp(i*w*t + p)
= -i(w)*a*a
finally we devide the result by the norm of s squared
s'*conj(s) / |s|^2 = -i(w+p)
Releated to the FSK demodulation, we know that w will fall out to two distinct values.
w1 and w2, and that w2-w1 = dw.
w will have the form w = wc +/- dw, where wc is the center frequnecy.
wc + p will show up as a DC component in the s'*conj(s) / |s|^2 function.
this function returns the angular frequency of the current QI sample.
To get the actual frequency
f = w* (sr / 2*pi)
where sr is the sample rate
*/
static inline double fsk_demodulator(int re, int im)
{
static complex<double> s1 = 0;
static complex<double> s2 = 0;
double w;
complex<double> s((double) re, (double) im);
double a2 = norm(s1);
if (a2 > 0.0)
{
complex<double> ds = (s - s2) / 2.0; // the derivative
complex<double> q = conj(s1) * ds;
w = imag(q) / a2;
}
else
{
w = 0.0;
}
s2 = s1; // save 2 samp behind
s1 = s;
return w;
}
static inline double atan_fm_demodulator(int re, int im)
{
static complex<double> s1 = 0;
complex<double> s((double) re, (double) im);
double d = arg(conj(s1) * s);
s1 =s;
return d;
}
#define NZEROS6 6
#define NPOLES6 6
#define GAIN6 4.570794845e+05
static inline double lp_filter1(double in)
{
static float xv[NZEROS6+1], yv[NPOLES6+1];
{
xv[0] = xv[1];
xv[1] = xv[2];
xv[2] = xv[3];
xv[3] = xv[4];
xv[4] = xv[5];
xv[5] = xv[6];
xv[6] = in / GAIN6;
yv[0] = yv[1];
yv[1] = yv[2];
yv[2] = yv[3];
yv[3] = yv[4];
yv[4] = yv[5];
yv[5] = yv[6];
yv[6] = (xv[0] + xv[6]) + 6 * (xv[1] + xv[5]) + 15 * (xv[2] + xv[4])
+ 20 * xv[3]
+ ( -0.3862279890 * yv[0]) + ( 2.6834487459 * yv[1])
+ ( -7.8013262392 * yv[2]) + ( 12.1514352550 * yv[3])
+ (-10.6996337410 * yv[4]) + ( 5.0521639483 * yv[5]);
return yv[6];
}
}
static inline double lp_filter2(double in)
{
static float xv[NZEROS6+1], yv[NPOLES6+1];
{
xv[0] = xv[1];
xv[1] = xv[2];
xv[2] = xv[3];
xv[3] = xv[4];
xv[4] = xv[5];
xv[5] = xv[6];
xv[6] = in / GAIN6;
yv[0] = yv[1];
yv[1] = yv[2];
yv[2] = yv[3];
yv[3] = yv[4];
yv[4] = yv[5];
yv[5] = yv[6];
yv[6] = (xv[0] + xv[6]) + 6 * (xv[1] + xv[5]) + 15 * (xv[2] + xv[4])
+ 20 * xv[3]
+ ( -0.3862279890 * yv[0]) + ( 2.6834487459 * yv[1])
+ ( -7.8013262392 * yv[2]) + ( 12.1514352550 * yv[3])
+ (-10.6996337410 * yv[4]) + ( 5.0521639483 * yv[5]);
return yv[6];
}
}
/**
* Lowpass filter butterworth order 3 cutoff 100khz
*/
static inline double freq_filter(double in)
{
#define NZEROS 3
#define NPOLES 3
#define GAIN 3.681602264e+02
static float xv[NZEROS + 1], yv[NPOLES + 1];
xv[0] = xv[1];
xv[1] = xv[2];
xv[2] = xv[3];
xv[3] = in / GAIN;
yv[0] = yv[1];
yv[1] = yv[2];
yv[2] = yv[3];
yv[3] = (xv[0] + xv[3]) + 3 * (xv[1] + xv[2]) + (0.5400688125 * yv[0])
+ (-1.9504598825 * yv[1]) + (2.3886614006 * yv[2]);
return yv[3];
}
/*
* Butterworth oder 3 low pass cutoff 10hz
*/
static inline double lock_filter(double in)
{
#define NZEROS1 3
#define NPOLES1 3
#define GAIN1 2.856028586e+05
static float xv[NZEROS1 + 1], yv[NPOLES1 + 1];
xv[0] = xv[1];
xv[1] = xv[2];
xv[2] = xv[3];
xv[3] = in / GAIN1;
yv[0] = yv[1];
yv[1] = yv[2];
yv[2] = yv[3];
yv[3] = (xv[0] + xv[3]) + 3 * (xv[1] + xv[2]) + (0.9404830634 * yv[0])
+ (-2.8791542471 * yv[1]) + (2.9386431728 * yv[2]);
return yv[3];
}
struct frame_state
{
unsigned int bit_count;
unsigned int data_len;
unsigned char data[64];
bool last_bit;
int b_cnt;
enum
{
B_PREAMP, B_SOF0, B_SOF1, B_DATA
} state_b;
} fs;
enum
{
S_IDLE, S_PREAMP, S_BITLOCK
} state = S_IDLE;
int pre_len = 0; // # Length of preamble bit
int pre_cnt = 0;
double bit_len = 0;
double bit_cnt = 0.0;
double wc = 0; // # center frequency
bool last_logic = false;
bool hasSignal = false;
bool msc; //Manchester
const int lead_in = 10;
double dr; //Datarate
/**
* This program takes the output of rtl_sdr into stdin and decodes Z-Wave
* frames. The sample rate is assumed to be 2.048 MHz
*/
/* 9.6k frame of length 64 + preamble 10 */
#define SAMPLERATE 2048000
#define MAX_FRAME_DURATION (64+10)*8*(SAMPLERATE/9600)
int main(int argc, char** argv)
{
double f, s, lock;
size_t s_num = 0; //Sample number
size_t f_num = 0; //Z-wave frame number
complex<unsigned char> recorder[MAX_FRAME_DURATION]; //Cyclic buffer to store recorded frames
int rec_ptr = 0;
int frame_start;
int enable_recorder, ch, fd;
enable_recorder = 0;
while ((ch = getopt(argc, argv, "r")) != -1)
{
switch (ch)
{
case 'r':
enable_recorder = 1;
break;
case '?':
default:
printf("Usage: %s [-r] \n", argv[0]);
printf("\t-r enable frame recorder\n");
return -1;
}
}
open_wirreshark();
while (!feof(stdin))
{
unsigned char g[1024];
fread(g, 1024, 1, stdin);
for(int i=0; i < 1024; i+=2)
{
if (enable_recorder)
{
/*Frame recorder for debugging */
recorder[rec_ptr++] = complex<unsigned char>(g[0], g[1]);
if (rec_ptr > MAX_FRAME_DURATION)
rec_ptr = 0;
}
/*if(g[i]==255 || g[0]==0) {
printf("Gain is too high!\n");
}*/
double re = (g[i] - 127);
double im = (g[i+1] - 127);
s_num++;
re = lp_filter1(re);
im = lp_filter2(im);
//f = fsk_demodulator(re, im);
f = atan_fm_demodulator(re,im);
s = freq_filter(f);
/*
* We use a 12khz lowpass filter to lock on to a preable. When this value is "stable",
* a preamble could be present, further more the value of lock, will correspond to the
* center frequency of the fsk (wc)
*/
lock = lock_filter(f);
//printf("%e %e %e\n",f,s,lock);
/* TODO come up with a better lock detection
* just using lock < 0 as lock condition, seems rather arbitrary
*/
/* #If we are in bitlock mode, make sure that the signal does not derivate by more than
# 1/2 seperation, TODO calculate 1/2 seperation
*/
/*if(state == S_BITLOCK) {
hasSignal = fabs(wc - lock) < 0.1;
printf("lock lost %f\n",fabs(wc - lock));
} else {*/
hasSignal = fabs(lock) > 0.01;
/*}*/
if (hasSignal)
{
bool logic = (s - wc) < 0;
if (state == S_IDLE)
{
state = S_PREAMP;
pre_cnt = 0;
pre_len = 0;
frame_start = rec_ptr;
wc = lock;
}
else if (state == S_PREAMP)
{
wc = 0.99*wc + lock*0.01;
pre_len++;
if (logic ^ last_logic) //#edge trigger (rising and falling)
{
pre_cnt++;
if (pre_cnt == lead_in) //# skip the first lead_in
{
pre_len = 0;
}
else if (pre_cnt > lead_in+20) //Minimum preamble length is 10 bytes i.e 80 bits
{
state = S_BITLOCK;
fs.state_b = fs.B_PREAMP;
fs.last_bit = not logic;
bit_len = double(pre_len) / (pre_cnt - lead_in-1);
bit_cnt = 3 * bit_len / 4.0;
dr = SAMPLERATE/bit_len;
msc = dr < 15e3; //Should we use manchester encoding
}
}
}
else if (state == S_BITLOCK)
{
if (logic ^ last_logic)
{
if(msc && (bit_cnt < bit_len/2.0))
{
bit_cnt = 1 * bit_len / 4.0; //#Re-sync on edges
}
else
{
bit_cnt = 3 * bit_len / 4.0; //#Re-sync on edges
}
}
else
{
bit_cnt = bit_cnt + 1.0;
}
if (bit_cnt >= bit_len) // # new bit
{
//Sub state machine
if (fs.state_b == fs.B_PREAMP)
{
if (logic and fs.last_bit)
{
fs.state_b = fs.B_SOF1;
fs.b_cnt = 1; //This was the first SOF bit
}
}
else if (fs.state_b == fs.B_SOF0)
{
if (not logic)
{
if (fs.b_cnt == 4)
{
fs.b_cnt = 0;
fs.data_len = 0;
fs.state_b = fs.B_DATA;
}
}
else
{
//printf("SOF0 error bit len %f\n",bit_len);
state = S_IDLE;
}
}
else if (fs.state_b == fs.B_SOF1)
{
if (logic)
{
if (fs.b_cnt == 4)
{
fs.b_cnt = 0;
fs.state_b = fs.B_SOF0;
}
}
else
{
//printf("SOF1 error \n");
state = S_IDLE;
}
}
else if (fs.state_b == fs.B_DATA) //Payload bit
{
fs.data[fs.data_len] = (fs.data[fs.data_len] << 1)
| logic;
if ((fs.b_cnt & 7) == 0)
{
fs.data[++fs.data_len] = 0;
}
}
fs.last_bit = logic;
fs.b_cnt++;
bit_cnt = bit_cnt - bit_len;
}
}
last_logic = logic;
}
else //# No LOCKs
{
if (state == S_BITLOCK && fs.state_b == fs.B_DATA)
{
f_num++;
//zwave_print(fs.data,fs.data_len);
write_wiresark(fs.data, fs.data_len,
bit_len < 30 ? 2 : bit_len < 100 ? 1 : 0);
//frame = bits2bytes(bits)
//zwave_print(frame)
printf("Frame num %lu ends on sample %lu\ Fofs=%f SR=%f\n", f_num, s_num,wc/M_PI*(SAMPLERATE/2),dr );
if (enable_recorder)
{
char rec_name[256];
snprintf(rec_name, sizeof(rec_name), "frame%lu.dat", f_num);
FILE *f = fopen(rec_name, "w");
if (rec_ptr > frame_start)
{
fwrite(&recorder[frame_start],
sizeof(complex<unsigned char> ),
rec_ptr - frame_start, f);
}
else
{
fwrite(&recorder[frame_start],
sizeof(complex<unsigned char> ),
MAX_FRAME_DURATION - frame_start, f);
fwrite(&recorder[0], sizeof(complex<unsigned char> ),
rec_ptr,f);
}
fclose(f);
}
}
fs.state_b = fs.B_PREAMP;
state = S_IDLE;
}
}
}
return 0;
}