-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsearch.py
209 lines (166 loc) · 7.29 KB
/
search.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
# search.py
# ---------
# Licensing Information: You are free to use or extend these projects for
# educational purposes provided that (1) you do not distribute or publish
# solutions, (2) you retain this notice, and (3) you provide clear
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
#
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
# The core projects and autograders were primarily created by John DeNero
# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).
# Student side autograding was added by Brad Miller, Nick Hay, and
# Pieter Abbeel (pabbeel@cs.berkeley.edu).
"""
In search.py, you will implement generic search algorithms which are called by
Pacman agents (in searchAgents.py).
"""
from re import S
import util
class SearchProblem:
"""
This class outlines the structure of a search problem, but doesn't implement
any of the methods (in object-oriented terminology: an abstract class).
You do not need to change anything in this class, ever.
"""
def getStartState(self):
"""
Returns the start state for the search problem.
"""
util.raiseNotDefined()
def isGoalState(self, state):
"""
state: Search state
Returns True if and only if the state is a valid goal state.
"""
util.raiseNotDefined()
def getSuccessors(self, state):
"""
state: Search state
For a given state, this should return a list of triples, (successor,
action, stepCost), where 'successor' is a successor to the current
state, 'action' is the action required to get there, and 'stepCost' is
the incremental cost of expanding to that successor.
"""
util.raiseNotDefined()
def getCostOfActions(self, actions):
"""
actions: A list of actions to take
This method returns the total cost of a particular sequence of actions.
The sequence must be composed of legal moves.
"""
util.raiseNotDefined()
def tinyMazeSearch(problem):
"""
Returns a sequence of moves that solves tinyMaze. For any other maze, the
sequence of moves will be incorrect, so only use this for tinyMaze.
"""
from game import Directions
s = Directions.SOUTH
w = Directions.WEST
return [s, s, w, s, w, w, s, w]
def depthFirstSearch(problem):
from util import Stack
"""
Search the deepest nodes in the search tree first.
Your search algorithm needs to return a list of actions that reaches the
goal. Make sure to implement a graph search algorithm.
To get started, you might want to try some of these simple commands to
understand the search problem that is being passed in:
"""
closed = [problem.getStartState()] #Starting node is in the closed list
fringe = Stack()
for s in problem.getSuccessors(problem.getStartState()):
fringe.push((s, [])) #Stores the successor and list of actions to get to that node
while not fringe.isEmpty():
node = fringe.pop()
state = node[0]
actions = node[1]
#Adds the direction taken to get here to the list of actions
actions.append(state[1])
if problem.isGoalState(state[0]):
return actions
if state[0] not in closed:
closed.append(state[0]) #Adds the coordinates to the closed list
for child in problem.getSuccessors(state[0]):
if child not in closed:
fringe.push((child, actions.copy())) #Adds child and a copy of actions to get here
def breadthFirstSearch(problem):
from util import Queue
"""Search the shallowest nodes in the search tree first."""
closed = [problem.getStartState()] #Starting node is in the closed list
fringe = Queue()
if problem.isGoalState(problem.getStartState()):
return []
for s in problem.getSuccessors(problem.getStartState()):
fringe.push((s, [])) #Stores the successor and list of actions to get to that node
while not fringe.isEmpty():
node = fringe.pop()
state = node[0]
actions = node[1]
#Adds the direction taken to get here to the list of actions
actions.append(state[1])
if problem.isGoalState(state[0]):
return actions
if state[0] not in closed:
closed.append(state[0]) #Adds the coordinates to the closed list
for child in problem.getSuccessors(state[0]):
if child not in closed:
fringe.push((child, actions.copy())) #Adds child and a copy of actions to get here
def uniformCostSearch(problem):
from util import PriorityQueue
"""Search the node of least total cost first."""
closed = [problem.getStartState()] #Starting node is in the closed list
fringe = PriorityQueue()
for s in problem.getSuccessors(problem.getStartState()):
fringe.push((s, []), s[2]) #Stores the successor and list of actions to get there
while not fringe.isEmpty():
node = fringe.pop()
state = node[0]
actions = node[1]
#Adds the direction taken to get here to the list of actions
actions.append(state[1])
if problem.isGoalState(state[0]):
return actions
if state[0] not in closed:
closed.append(state[0]) #Adds the coordinates to the closed list
for child in problem.getSuccessors(state[0]):
if child not in closed:
#Update total cost of node
temp = list(child)
temp[2] += state[2]
fringe.push((temp, actions.copy()), temp[2]) #Adds child and a copy of actions to get here with priority of cost
def nullHeuristic(state, problem=None):
"""
A heuristic function estimates the cost from the current state to the nearest
goal in the provided SearchProblem. This heuristic is trivial.
"""
return 0
def aStarSearch(problem, heuristic=nullHeuristic):
from util import PriorityQueue
"""Search the node that has the lowest combined cost and heuristic first."""
"*** YOUR CODE HERE ***"
closed = [problem.getStartState()] #Starting node is in the closed list
fringe = PriorityQueue()
for s in problem.getSuccessors(problem.getStartState()):
fringe.push((s, []), s[2] + heuristic(s[0], problem)) #Stores the successor and list of actions to get there, priority of cost + heuristic
while not fringe.isEmpty():
node = fringe.pop()
state = node[0]
actions = node[1]
#Adds the direction taken to get here to the list of actions
actions.append(state[1])
if problem.isGoalState(state[0]):
return actions
if state[0] not in closed:
closed.append(state[0]) #Adds the coordinates to the closed list
for child in problem.getSuccessors(state[0]):
if child not in closed:
#Update total cost of node
temp = list(child)
temp[2] += state[2]
fringe.push((temp, actions.copy()), temp[2] + heuristic(temp[0], problem)) #Adds child and a copy of actions to get here with priority of cost + heuristic
# Abbreviations
bfs = breadthFirstSearch
dfs = depthFirstSearch
astar = aStarSearch
ucs = uniformCostSearch