forked from HarvardPL/cs152-lecture-code
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcode02.v
119 lines (103 loc) · 3.3 KB
/
code02.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
From Coq Require Import ZArith.ZArith.
From Coq Require Import Strings.String.
Open Scope string_scope.
Definition Var := string.
Definition Var_eq := String.eqb.
Definition Int := Z.
Definition Int_add := Z.add.
Definition Int_mul := Z.mul.
Inductive Exp : Type :=
| EVar : Var -> Exp
| EInt : Int -> Exp
| EAdd : Exp -> Exp -> Exp
| EMul : Exp -> Exp -> Exp
| EAsg : Var -> Exp -> Exp -> Exp.
Definition Store := Var -> Int.
Definition Config := (Exp * Store)%type.
Definition StoreUpdate (s : Store) (x : Var) (n : Int) : Store :=
fun (y : Var) => if (Var_eq x y) then n else (s y).
Reserved Notation "c1 '-->' c2" (at level 40).
Inductive sstep : Config -> Config -> Prop :=
| SSVar : forall x s,
(EVar x, s) --> (EInt (s x), s)
| SSAdd : forall n m s,
(EAdd (EInt n) (EInt m), s) --> (EInt (Int_add n m), s)
| SSMul : forall n m s,
(EMul (EInt n) (EInt m), s) --> (EInt (Int_mul n m), s)
| SSAsg : forall n x e s,
(EAsg x (EInt n) e, s) --> (e, StoreUpdate s x n)
| SSLAdd : forall e1 e1' e2 s s',
(e1, s) --> (e1', s') ->
(EAdd e1 e2, s) --> (EAdd e1' e2, s')
| SSRAdd : forall n e2 e2' s s',
(e2, s) --> (e2', s') ->
(EAdd (EInt n) e2, s) --> (EAdd (EInt n) e2', s')
| SSLMul : forall e1 e1' e2 s s',
(e1, s) --> (e1', s') ->
(EMul e1 e2, s) --> (EMul e1' e2, s')
| SSRMul : forall n e2 e2' s s',
(e2, s) --> (e2', s') ->
(EMul (EInt n) e2, s) --> (EMul (EInt n) e2', s')
| SSAsg1 : forall x e1 e1' e2 s s',
(e1, s) --> (e1', s') ->
(EAsg x e1 e2, s) --> (EAsg x e1' e2, s')
where "c1 '-->' c2" := (sstep c1 c2).
Definition sigma : Store :=
fun x => if Var_eq x "foo" then Zpos 4
else if Var_eq x "bar" then Zpos 3
else Z0.
Example foobar1 :
(EMul
(EAdd (EVar "foo") (EInt (Zpos 2)))
(EAdd (EVar "bar") (EInt (Zpos 1))),
sigma)
-->
(EMul
(EAdd (EInt (Zpos 4)) (EInt (Zpos 2)))
(EAdd (EVar "bar") (EInt (Zpos 1))),
sigma).
Proof.
apply SSLMul.
apply SSLAdd.
apply SSVar.
Qed.
Definition relation (X : Type) := X -> X -> Prop.
Inductive multi {X : Type} (R : relation X) : relation X :=
| multi_refl : forall (x : X), multi R x x
| multi_step : forall (x y z : X),
R x y ->
multi R y z ->
multi R x z.
Definition multisstep := (multi sstep).
Notation "t1 '-->*' t2" := (multisstep t1 t2) (at level 40).
Example foobarv:
((EMul
(EAdd (EVar "foo") (EInt (Zpos 2)))
(EAdd (EVar "bar") (EInt (Zpos 1))),
sigma)
-->*
((EInt (Zpos 24),
sigma))).
Proof.
(* one-liner:
repeat (try eapply multi_refl; eapply multi_step; eauto using sstep).
*)
eapply multi_step. eauto using sstep.
eapply multi_step. eauto using sstep.
eapply multi_step. eauto using sstep.
eapply multi_step. eauto using sstep.
eapply multi_step. eauto using sstep.
eapply multi_refl.
Qed.
Definition progress :=
forall e s,
(exists n, EInt n = e) \/
(exists e' s', (e, s) --> (e', s')).
Definition termination :=
forall e s0, exists s n, (e, s0) -->* (EInt n, s).
Definition deterministic_result :=
forall e s0 s s' n n',
(((e,s0) -->* (EInt n, s)) /\
((e,s0) -->* (EInt n', s')))
->
(n = n' /\ s = s').