forked from HarvardPL/cs152-lecture-code
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcode15.lhs
228 lines (164 loc) · 5.35 KB
/
code15.lhs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
This is a literate haskell file, tested in GHC 7.8.2. to GHC 8.10.7.
If you are running an earlier version that does not support EmptyCase,
you can remove it from the language extensions required below and
replace the definition of abort below to "cheat" by using an
infinite loop to produce any result type: abort x = abort x
> {-# LANGUAGE EmptyDataDecls, EmptyCase, RankNTypes, ScopedTypeVariables #-}
Curry-Howard Isomorphism: Proposition as Types
- Implication corresponds to function abstraction, and its elimination (modus ponens) to application.
- Conjunction corresponds to the pair type (cartesian product).
- Disjunction corresponds to a disjoint sum (think tagged list in Scheme).
- Each algebraic datatype is a disjoint sum of products.
Further reading:
- Lecture notes by Frank Pfenning on Constructive Logic
http://www.cs.cmu.edu/~fp/courses/15317-f09/schedule.html
- Natural Deduction: http://www.cs.cmu.edu/~fp/courses/15317-f09/lectures/02-natded.pdf
- Proofs as Programs: http://www.cs.cmu.edu/~fp/courses/15317-f09/lectures/04-pap.pdf
- Church's Thesis and Functional Programming by David A. Turner
http://www.cs.kent.ac.uk/people/staff/dat/miranda/ctfp.pdf
- Total Functional Programming by David A. Turner
http://www.jucs.org/jucs_10_7/total_functional_programming
- Propositions as Types by Phil Wadler
http://homepages.inf.ed.ac.uk/wadler/papers/propositions-as-types/propositions-as-types.pdf
- Theorems for Free by Phil Wadler
http://ttic.uchicago.edu/~dreyer/course/papers/wadler.pdf
conjunction: A /\ B
A true, B true
----------------------- I/\
A /\ B true
A /\ B true
----------------------- E/\1
A true
A /\ B true
----------------------- E/\2
B true
proposition as types for conjunction: (A /\ B) ~~ (A, B) or (A x B) cartesian product
Ma: A, Mb: B
----------------------- I/\
(Ma, Mb): (A, B)
M: (A, B)
----------------------- E/\1
fst M: A
M: (A, B)
----------------------- E/\2
snd M: B
implication: A -> B
A true
------ u
.
.
.
B true
----------------------- I->u
A -> B true
A true, A -> B true
----------------------- E->
B true
proposition as types for implication: -> (implication) ~~ -> (function:abstraction/application)
u: A
------ u
.
.
.
M: B
----------------------- I->u
(\u:A -> M): A -> B
M2: A, M1: A -> B
----------------------- E->
(M1 M2)
disjunction: A \/ B
A true
----------------------- I\/1
A \/ B true
B true
----------------------- I\/2
A \/ B true
A B
------ u ------w
. .
. .
. .
A\/B true C C
-------------------------- E\/u,w
C true
proposition as types for disjunction: (A \/ B) ~~ (A | B) or (A + B) disjoint sum
M: A
----------------------- I\/1
inl M: A+B
M: B
----------------------- I\/2
inr M: A+B
u:A w:B
------ u ------w
. .
. .
. .
M:A+B Mu:C Mw:C
------------------------------- E\/u,w
case M of u -> Mu | w -> Mw : C
> import Data.Either
true: empty product
> data T = T
false: empty sum
> data F
"ex falso quodlibet": false implies anything!
> abort :: F -> a
> abort x = case x of {}
> idF :: F -> F
> idF x = x
negation
> type Not a = a -> F
algebraic datatypes
> data And a b = AndBoth a b
> data Or a b = OrLeft a | OrRight b
> data Nat = Z | S Nat
> data List a = Nil | Cons a (List a)
classical logic
> type ProofByContradiction a = (Not a -> F) -> a
> type DoubleNegationElim a = (Not (Not a)) -> a
> type ExcludedMiddle a = Either a (Not a)
> type PierceLaw a b = ((a->b)->a)->a
> type ProofByContradiction4All = forall a. ProofByContradiction a
> type DoubleNegationElim4All = forall a. DoubleNegationElim a
> type ExcludedMiddle4All = forall a. ExcludedMiddle a
> type PierceLaw4All = forall a b. PierceLaw a b
exercises
1. Show that A /\ B -> B /\ A.
2. Show that A /\ B -> A \/ B.
3. Show that (B \/ C) -> (B -> C) -> C.
4. Show that (B -> C) -> (A -> B) -> (A -> C). What program does this type/proposition correspond to?
5. (Hard) Classical logic: show that any of the above axioms for classical logic are equivalent.
solutions to exercises
exercise 1
> ex1 :: (a, b) -> (b, a)
> ex1 = \ab -> (snd ab, fst ab)
exercise 2
> ex2 :: (a, b) -> Either a b
> ex2 = \ab -> Left (fst ab)
> ex2alt :: (a, b) -> Either a b
> ex2alt = \ab -> Right (snd ab)
exercise 3
> ex3 :: Either b c -> (b -> c) -> c
> ex3 = \boc -> \fbc -> case boc of
> Left b -> fbc b
> Right c -> c
exericse 4 (function composition)
> ex4 :: (b -> c) -> (a -> b) -> (a -> c)
> ex4 = \g -> \f -> \x -> g (f x)
exercise 5
> classical12 :: ProofByContradiction4All -> DoubleNegationElim4All
> classical12 = \(h::ProofByContradiction4All) -> h
> classical23 :: DoubleNegationElim4All -> ExcludedMiddle4All
> classical23 =
> \(h::DoubleNegationElim4All) ->
> h (\(g::Not (ExcludedMiddle a)) -> g (Left (h (\(i::Not a) -> g (Right i)))))
> useEM :: ExcludedMiddle4All -> ExcludedMiddle a
> useEM h = h
> classical34 :: ExcludedMiddle4All -> PierceLaw4All
> classical34 =
> \(h::ExcludedMiddle4All) -> \f -> case (useEM h) of
> Left a -> a
> Right n -> f (\a -> abort (n a))
> classical41 :: PierceLaw4All -> ProofByContradiction4All
> classical41 =
> \(h::PierceLaw4All) -> \(f::(a->F)->F) -> h (\g -> abort (f g))