-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathIris_Classifier.py
81 lines (60 loc) · 2.05 KB
/
Iris_Classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
# Load libraries
import pandas
from pandas.plotting import scatter_matrix
import matplotlib.pyplot as plt
from sklearn import model_selection
from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix
from sklearn.metrics import accuracy_score
from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVC
#load dataset
url = "https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data"
names = ['sepal_length', 'sepal_width', 'petal_length' ,'petal_width', 'class']
dataset = pandas.read_csv(url,names=names)
#get shape
print(dataset.shape)
#dataset.head(k) ->prints first k training examples
#print(dataset.head(20))
# #detailed description of dataset
# print(dataset.describe())
# class distribution
print(dataset.groupby('class').size())
# histograms
dataset.hist()
plt.show()
#scatter plot matrix
scatter_matrix(dataset)
plt.show()
# Split-out validation dataset
array = dataset.values
X = array[:,0:4]
Y = array[:,4]
validation_size = 0.20
seed = 7
X_train, X_validation, Y_train, Y_validation = model_selection.train_test_split(X, Y, test_size=validation_size, random_state=seed)
# Test options and evaluation metric
seed = 7
scoring = 'accuracy'
#check all algos
models = []
models.append(('LR',LogisticRegression()))
models.append(('SVM',SVC()))
#evaluate each model in turn
''' results = []
names = []
for name, model in models:
kfold = model_selection.KFold(n_splits=10, random_state=seed)
cv_results = model_selection.cross_val_score(model, X_train, Y_train, cv=kfold, scoring=scoring)
results.append(cv_results)
names.append(name)
msg = "%s: %f (%f)" % (name, cv_results.mean(), cv_results.std())
print(msg)
'''
# Make predictions on validation dataset
lr = LogisticRegression()
lr.fit(X_train,Y_train);
predictions = lr.predict(X_validation)
print(accuracy_score(Y_validation, predictions))
print(confusion_matrix(Y_validation, predictions))
print(classification_report(Y_validation, predictions))