-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMain.py
26 lines (24 loc) · 936 Bytes
/
Main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
#!/usr/bin/env python
import torch
import tifffile
import numpy as np
from functions import UnetModel, Trainer, data_gen, DiceLoss, batch_data_gen
if __name__ == "__main__":
image = tifffile.imread('traindata/training_input.tif')
label = tifffile.imread('traindata/training_groundtruth.tif')
window_size = (64, 64, 128)
input_data = data_gen(image, window_size)
label_data = data_gen(label, window_size)
print('image size:', image.shape)
print('data size:', input_data.shape)
model = UnetModel()
print(model)
learning_rate = 0.01
optim = torch.optim.Adam(params=model.parameters(), lr=learning_rate)
criterion = DiceLoss()
no_epochs = 10
trainer = Trainer(net=model, optimizer=optim, criterion=criterion, no_epochs=no_epochs)
trainer.train(input_data, label_data, batch_data_gen)
pred = trainer.predict(input_data)
print(pred.shape)
np.save('prediction', pred)