-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy patheasyAGIcli.py
136 lines (114 loc) · 5.43 KB
/
easyAGIcli.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
# easyAGI.py
import openai
from api import APIManager
from bdi import BDIModel, Belief, Desire, Intention
from logic import LogicTables
from SocraticReasoning import SocraticReasoning
from reasoning import Reasoning
from self_healing import SelfHealingSystem
from memory import save_conversation_memory, load_conversation_memory, delete_conversation_memory
from chatter import GPT4o, GroqModel, OllamaModel
class AGI:
def __init__(self):
# Initialize API Manager
self.api_manager = APIManager()
self.manage_api_keys()
self.openai_api_key = self.api_manager.get_api_key('openai')
self.groq_api_key = self.api_manager.get_api_key('groq')
self.ollama_api_key = 'ollama' # Ollama doesn't require an actual API key, just the identifier
if self.openai_api_key and self.groq_api_key and self.ollama_api_key:
self.chatter = self.select_provider()
elif self.openai_api_key:
print(f"DEBUG: Using OpenAI API key: {self.openai_api_key}") # Debug statement
self.chatter = GPT4o(self.openai_api_key)
elif self.groq_api_key:
self.chatter = GroqModel(self.groq_api_key)
elif self.ollama_api_key:
self.chatter = OllamaModel()
else:
print("No API key found for OpenAI, Groq, or Ollama.")
self.manage_api_keys()
# Initialize other components
self.bdi_model = BDIModel()
self.logic_tables = LogicTables()
self.socratic_reasoner = SocraticReasoning(self.chatter) # Pass the chatter instance
self.reasoner = Reasoning(self.chatter) # Pass the chatter instance
self.self_healer = SelfHealingSystem()
def manage_api_keys(self):
while True:
self.api_manager.list_api_keys()
action = input("Choose an action: (a) Add API key, (d) Delete API key, (l) List API keys, (Press Enter to continue): ").strip().lower()
if not action:
self.openai_api_key = self.api_manager.get_api_key('openai')
self.groq_api_key = self.api_manager.get_api_key('groq')
self.ollama_api_key = 'ollama' if 'ollama' in self.api_manager.api_keys else None
if self.openai_api_key or self.groq_api_key or self.ollama_api_key:
break
else:
print("No API keys found. Please add at least one API key.")
elif action == 'a':
self.api_manager.add_api_key_interactive()
elif action == 'd':
api_name = input("Enter the API name to delete: ").strip()
if api_name:
self.api_manager.remove_api_key(api_name)
elif action == 'l':
self.api_manager.list_api_keys()
def select_provider(self):
while True:
choice = input("Multiple API keys found. Select the provider (1 for OpenAI, 2 for Groq, 3 for Ollama): ").strip()
if choice == '1':
return GPT4o(self.openai_api_key)
elif choice == '2':
return GroqModel(self.groq_api_key)
elif choice == '3':
return OllamaModel()
else:
print("Invalid choice. Please select 1 for OpenAI, 2 for Groq, or 3 for Ollama.")
def perceive_environment(self):
# This method should gather data from the environment
agi_prompt = input("Enter the problem to solve (or type 'exit' to quit): ")
return agi_prompt
def learn_from_data(self, data):
# This method should process and learn from the gathered data
new_belief = Belief(data, self.chatter)
self.bdi_model.update_beliefs({data: new_belief})
new_desire = Desire(f"Solve: {data}")
self.bdi_model.set_desires([new_desire])
self.bdi_model.form_intentions()
self.logic_tables.add_variable('Belief')
self.logic_tables.add_expression('True') # Simplified example
truth_table = self.logic_tables.generate_truth_table()
# Display truth table
for row in truth_table:
print("\t".join(map(str, row)))
self.socratic_reasoner.add_premise(data)
self.socratic_reasoner.draw_conclusion()
self.reasoner.add_premise(data)
self.reasoner.draw_conclusion()
return data
def make_decisions(self, knowledge):
# This method should make decisions based on the learned knowledge
decision = self.chatter.generate_response(knowledge)
return decision
def communicate_response(self, decisions):
# This method should communicate the decision made
print(f"\nSolution:\n{decisions}\n")
def main_loop(self):
# Main loop to continuously perceive, learn, decide, and communicate
conversation_memory = []
while True:
environment_data = self.perceive_environment()
if environment_data.lower() == 'exit':
save_conversation_memory(conversation_memory)
break
learned_knowledge = self.learn_from_data(environment_data)
decisions = self.make_decisions(learned_knowledge)
self.communicate_response(decisions)
# Save the dialogue to memory
conversation_memory.append((environment_data, decisions))
def main():
agi = AGI()
agi.main_loop()
if __name__ == "__main__":
main()