-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
280 lines (223 loc) · 10.6 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
import argparse
import json
import os
import pdb
import matplotlib.pyplot as plt
import numpy as np
import torch
import torch.utils.data.dataloader
import torchvision.transforms
import ecgbc.dataset.transforms
import ecgbc.dataset.wfdb_dataset
import ecgbc.dataset.wfdb_single_beat
import ecgbc.models
import ecgbc.autoencoder
import ecgbc.classifier
DEFAULT_NUM_EPOCHS = 10
DEFAULT_BATCH_SIZE = 128
DEFAULT_TUNING_MAX_ITER = 50
DEFAULT_CV_K = 5
def parse_cli():
def is_dir(dirname):
if not os.path.isdir(dirname):
raise argparse.ArgumentTypeError(f'{dirname} is not a directory')
else:
return dirname
def is_file(filename):
if not os.path.isfile(filename):
raise argparse.ArgumentTypeError(f'{filename} is not a file')
else:
return filename
p = argparse.ArgumentParser(description='ECG single beat classification')
sp = p.add_subparsers(help='Sub-command help')
# Generate dataset
sp_generate = sp.add_parser('generate-dataset',
help='Generate a single-beat dataset')
sp_generate.set_defaults(subcmd_fn=generate_dataset)
sp_generate.add_argument('--in', '-i', type=is_dir, dest='in_dir',
help='Input dir', required=True)
sp_generate.add_argument('--out', '-o', type=str, dest='out_dir',
help='Output dir', required=True)
sp_generate.add_argument('--transform-lpf', action='store_true',
help='Apply lowpass-filter')
sp_generate.add_argument('--transform-sma', action='store_true',
help='Subtract moving average')
sp_generate.add_argument('--filter-rri', action='store_true',
help='Filter out non physiological RR'
'intervals')
sp_generate.add_argument('--ann-ext', '-a', type=str, default='atr',
help='Input annotation extension')
sp_generate.add_argument('--rec-pattern', type=str, default=None,
help='Pattern for matching record names')
sp_generate.add_argument('--aami', '-A', action='store_true',
default=None,
help='Create AAMI compatible class labels')
# Debug
sp_train = sp.add_parser('debug', help='Debugging functions')
sp_train.set_defaults(subcmd_fn=debug)
sp_train.add_argument('--ds', '-d', type=is_dir, dest='dataset_dir',
help='Show dataset', required=True)
# Training
sp_train_dae = sp.add_parser('train-dae', help='Train DAE on ECG beats')
sp_train_dae.set_defaults(subcmd_fn=train_dae)
sp_train_cls = sp.add_parser('train-cls', help='Train ECG beat classifier')
sp_train_cls.set_defaults(subcmd_fn=train_cls)
for sp_train in (sp_train_dae, sp_train_cls):
sp_train.add_argument('--ds-train', '-d', type=is_dir,
help='Training dataset dir', required=True)
sp_train.add_argument('--ds-test', '-D', type=is_dir,
help='Test dataset dir', required=True)
sp_train.add_argument('--num-epochs', '-e', type=int,
default=DEFAULT_NUM_EPOCHS,
help='Number of epochs', required=False)
sp_train.add_argument('--batch-size', '-b', type=int,
default=DEFAULT_BATCH_SIZE,
help='Training batch size', required=False)
sp_train.add_argument('--load-model', '-L', type=is_file, default=None,
help='Load model state file', required=False)
sp_train.add_argument('--checkpoints', '-c', type=str, default=None,
help='Create a model state checkpoint '
'every time train loss improves',
required=False)
sp_train.add_argument('--early-stopping', '-s', type=int, default=None,
help='Stop after this many epochs without '
'train loss improvement', required=False)
sp_train.add_argument('--save-losses', '-o', type=str, default=None,
help='Save training losses', required=False)
# Tuning
sp_tune_dae = sp.add_parser('tune-dae', help='Tune DAE hyperparams')
sp_tune_dae.set_defaults(subcmd_fn=tune_dae)
sp_tune_cls = sp.add_parser('tune-cls',
help='Tune beat classifier hyperparams')
sp_tune_cls.set_defaults(subcmd_fn=tune_cls)
for sp_tune in (sp_tune_dae, sp_tune_cls):
sp_tune.add_argument('--ds', '-d', type=is_dir,
help='Dataset dir', required=True)
sp_tune.add_argument('--max-iter', '-i', type=int,
default=DEFAULT_TUNING_MAX_ITER,
help='Max number of tuning iterations',
required=False)
sp_tune.add_argument('--batch-size', '-b', type=int,
default=DEFAULT_BATCH_SIZE,
help='Batch size', required=False)
sp_tune.add_argument('--cv-k', '-c', type=int,
default=DEFAULT_CV_K,
help='Cross validation K', required=False)
sp_tune.add_argument('--load-model', '-L', type=is_file, default=None,
help='Load model state file', required=False)
sp_tune.add_argument('--output-filename', '-o', type=str,
default=None, help='Save tuning results to file',
required=False)
return p.parse_args()
def generate_dataset(in_dir, out_dir, ann_ext, **kwargs):
"""
Generates a single-beat dataset based on a folder containing WFDB records.
"""
transforms = []
if kwargs['transform_lpf']:
transforms.append(ecgbc.dataset.transforms.LowPassFilterWFDB())
if kwargs['transform_sma']:
transforms.append(ecgbc.dataset.transforms.SubtractMovingAverageWFDB())
wfdb_dataset = ecgbc.dataset.wfdb_dataset.WFDBDataset(
root_path=in_dir,
recname_pattern=kwargs['rec_pattern'],
transform=torchvision.transforms.Compose(transforms))
generator = ecgbc.dataset.wfdb_single_beat.Generator(
wfdb_dataset, in_ann_ext=ann_ext, out_ann_ext=f'ecg{ann_ext}',
calculate_rr_features=True, filter_rri=kwargs['filter_rri'],
aami_compatible=kwargs['aami']
)
generator.write(out_dir)
dataset = ecgbc.dataset.wfdb_single_beat.SingleBeatDataset(out_dir)
print(dataset)
def debug(dataset_dir, **kwargs):
dataset = ecgbc.dataset.wfdb_single_beat.SingleBeatDataset(
dataset_dir, transform=ecgbc.dataset.transforms.Normalize1D()
)
print(dataset)
batch_size = 32
loader = torch.utils.data.dataloader.DataLoader(
dataset, batch_size=batch_size, shuffle=True)
plt.ion()
cmap = plt.get_cmap('Set1')
fig, axes = plt.subplots(nrows=8, ncols=batch_size//8,
sharex='col', sharey='row')
axes = np.reshape(axes, (-1,))
fig.tight_layout()
for batch_idx, (samples, labels) in enumerate(loader):
fig.canvas.set_window_title(f'Batch {batch_idx}')
for i, ax in enumerate(axes):
y = samples[i, :-4].numpy()
x = np.r_[1:len(y)+1]
ax.clear()
ax.plot(x, y)
label_idx = labels[i].item()
label_text = dataset.idx_to_class[label_idx]
label_color = cmap.colors[label_idx]
ax.text(0, 0, label_text, color=label_color, weight='bold')
pdb.set_trace()
def train(trainer_class, ds_train, ds_test, num_epochs, batch_size,
load_model=None, checkpoints=None, early_stopping=None,
save_losses=None, **kwargs):
# Create data sets and loaders
data_tf = ecgbc.dataset.transforms.Normalize1D()
subset = dict(Q=0,)
ds_train = ecgbc.dataset.wfdb_single_beat.SingleBeatDataset(
ds_train, transform=data_tf, subset=subset)
ds_test = ecgbc.dataset.wfdb_single_beat.SingleBeatDataset(
ds_test, transform=data_tf, subset=subset)
dl_args = dict(batch_size=batch_size, shuffle=True, num_workers=2,
drop_last=False)
dl_train = torch.utils.data.DataLoader(ds_train, **dl_args)
dl_test = torch.utils.data.DataLoader(ds_test, **dl_args)
feature_size = ds_train[0][0].shape[0]
num_classes = len(ds_train.classes)
print("Train", ds_train, end='\n\n')
print("Test", ds_test)
# Create trainer & fit model
trainer = trainer_class(load_params_file=load_model,
feature_size=feature_size,
num_classes=num_classes)
result = trainer.fit(dl_train, dl_test, num_epochs,
checkpoints=checkpoints,
early_stopping=early_stopping,
verbose=True)
# Write outputs
if checkpoints is not None:
torch.save(trainer.model.state_dict(), f'{checkpoints}.pt')
if save_losses is not None:
with open(f'{save_losses}.json', mode='w', encoding='utf-8') as f:
json.dump(result._asdict(), f, indent=2, sort_keys=True)
# Plot
epochs = np.arange(result.num_epochs)
fig, ax = plt.subplots(2, 1, sharex='all')
ax[0].plot(epochs, result.train_loss, epochs, result.test_loss)
ax[0].legend(['train', 'test'])
ax[0].set_title('Loss')
ax[1].plot(epochs, result.train_acc, epochs, result.test_acc)
ax[1].legend(['train', 'test'])
ax[1].set_title('Accuracy')
ax[1].set_xlabel('Epoch #')
plt.show()
def train_dae(**kwargs):
train(ecgbc.autoencoder.Trainer, **kwargs)
def train_cls(**kwargs):
train(ecgbc.classifier.Trainer, **kwargs)
def tune(tuner_class, ds, max_iter, batch_size, cv_k, load_model,
output_filename, **kwargs):
# Create data set
data_tf = ecgbc.dataset.transforms.Normalize1D()
subset = dict(Q=0,)
ds = ecgbc.dataset.wfdb_single_beat.SingleBeatDataset(
ds, transform=data_tf, subset=subset)
tuner = tuner_class(max_iter=max_iter, batch_size=batch_size, cv_k=cv_k,
load_params_file=load_model)
best_hypers = tuner.tune(ds, output_filename=output_filename)
print("Best hyperparameters:", best_hypers)
def tune_dae(**kwargs):
tune(ecgbc.autoencoder.Tuner, **kwargs)
def tune_cls(**kwargs):
tune(ecgbc.classifier.Tuner, **kwargs)
if __name__ == '__main__':
parsed_args = parse_cli()
parsed_args.subcmd_fn(**vars(parsed_args))