forked from miniyk2012/brutal-algorithm-class
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrecursion.js
209 lines (183 loc) · 3.99 KB
/
recursion.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
function countUp(n) {
for (let i = 1; i <= n; i++) {
console.log(i);
}
}
function countUp2(n) {
if (n > 1) {
countUp2(n - 1)
}
console.log(n);
}
// countUp2(2) // 1 2
// 递归 Recursion(重复发生)
// 归纳法 Reduction(归纳法)具体到一般
// factorial 阶乘
// n!
// 0! = 1
// 1! = 1 x 0! = 1
// 2! = 2 x 1! = 2
// 3! = 3 x 2! = 6
// 4! = 4 x 3! = 24
// 5! = 5 x 4! = 120
// n! = n x (n-1)!
// 数学定义
// n = 0, n! = 1
// n > 0, n! = n x (n-1)!
// n ∈ 非负整数
function factorial(n) {
if (n === 0) {
return 1
}
return n * factorial(n - 1)
}
function factorialInLoop(n) {
let results = [1];
for (let i = 1; i <= n; i++) {
results.push(i * results[i - 1])
}
return results[n]; // results[0]
}
// console.log(factorialInLoop(4));
// 斐波那契
// 1 1 2 3 5 8 13 21 ...
// n = 0 or 1, fib = 1
// n > 1, fib = fib(n-1) + fib(n-2)
// n ∈ 自然数
function fib(n) {
if (n <= 1) {
return 1
}
return fib(n - 1) + fib(n - 2)
}
function fibInLoop(n) {
let results = [1, 1]
for (let i = 2; i <= n; i++) {
results.push(results[i - 1] + results[i - 2]);
}
return results[n];
}
function fibOptimized(n, seq) {
if (n < seq.length) {
return [seq[n], seq]
}
let [n1, seq1] = fibOptimized(n - 1, seq)
let [n2, seq2] = fibOptimized(n - 2, seq1)
seq2.push(n1 + n2)
return [seq2[n], seq2]
}
function fibOptimized2(n) {
function internal(n, seq) {
if (n < seq.length) {
return [seq[n], seq]
}
let [n1, seq1] = internal(n - 1, seq)
let [n2, seq2] = internal(n - 2, seq1)
seq2.push(n1 + n2)
return [seq2[n], seq2]
}
return internal(n, [1, 1])[0]
}
function fibOptimized3(n) {
let seq = [1, 1];
function internal(n) {
if (n < seq.length) {
return seq[n]
}
let n1 = internal(n - 1)
let n2 = internal(n - 2)
seq.push(n1 + n2)
return n1 + n2
}
return internal(n)
}
// console.log(fibOptimized3(101));
// console.log(fibInLoop(101));
// function fibOptimized4(n) {
// let seq = [1, 1];
// return (function(n) {
// if(n < seq.length) {
// return seq[n]
// }
// let n1 = ???(n-1)
// let n2 = ???(n-2)
// seq.push(n1 + n2)
// return n1 + n2
// })(n)
// }
// let f = function (self, n) {
// if (n > 1) {
// self(self, n - 1)
// }
// console.log(n);
// }
// f(f,5)
let countUp3 = (
function (self) {
return function (n) {
if (n > 1) {
self(self)(n - 1)
}
console.log(n);
}
}
)(
function (self) {
return function (n) {
if (n > 1) {
self(self)(n - 1)
}
console.log(n);
}
}
)
// countUp3(5)
let countUp4 = (
(self) => ((n) => { if (n > 1) { self(self)(n - 1) } console.log(n); })
)(
(self) => ((n) => { if (n > 1) { self(self)(n - 1) } console.log(n); })
)
// countUp4(5)
// f = (self) => (n) => { if (n > 1) { self(self)(n - 1) } console.log(n) };
let Rercursion = (
(self) => (f) => (n) => f(f)(self)(n)
)(
(self) => (f) => (n) => f(f)(self)(n)
)
let countUp5 = Rercursion(
(f) => (self) => (n) => {
if (n > 1) {
self(self)(f)(n - 1)
};
console.log(n);
}
)
// countUp5(10);
let fibR = Rercursion(
(f) => (self) => (n) => {
if (n <= 1) {
return 1
}
return self(self)(f)(n - 1) + self(self)(f)(n - 2)
}
)
// console.log(fibR(10));
// let fibR = Rercursion2(
// (me) => (n) => {
// if (n <= 1) {
// return 1
// }
// return me(n - 1) + me(n - 2)
// }
// )
// me === function(n) {
// if (n <= 1) {
// return 1
// }
// return me(n - 1) + me(n - 2)
// }
// Y-Combinator
// Fix Point
// 1 = factorial(1)
// 1 是 factorial 的不动点
// f = R(f)