-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathpreprocessing.py
343 lines (277 loc) · 9.32 KB
/
preprocessing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
from commonfunctions import *
import skimage as sk
import numpy as np
import matplotlib as mp
import scipy as sp
from heapq import *
import cv2
'''
convert image of any type to uint 8 byte
'''
def convertImgToUINT8(img_o):
img = np.copy(img_o)
img = img.astype(np.float64) / np.max(img)
img = 255 * img
img = img.astype(np.uint8)
return img
'''
convert gray scale image to binary image
'''
def binarize(img, block_size=101):
t = sk.filters.threshold_local(img, block_size, offset=10)
img_b = img < t
return img_b
'''
deskew image to be horizontal lines
'''
def deskew(original_img):
img = np.copy((original_img))
# Canny
imgCanny = sk.feature.canny(img, sigma=1.5)
thresh = sk.filters.threshold_otsu(imgCanny)
imgCanny = (imgCanny >= thresh)
# Apply Hough Transform
# Generates a list of 360 Radian degrees (-pi/2, pi/2)
angleSet = np.linspace(-np.pi, np.pi, 1440)
houghArr, theta, dis = sk.transform.hough_line(imgCanny, angleSet)
flatIdx = np.argmax(houghArr)
bestTheta = (flatIdx % theta.shape[0])
bestTheta = angleSet[bestTheta]
bestDis = np.int32(np.floor(flatIdx / theta.shape[0]))
bestDis = dis[bestDis]
# Rotate
thetaRotateDeg = (bestTheta*180)/np.pi
if thetaRotateDeg > 0:
thetaRotateDeg = thetaRotateDeg - 90
else:
thetaRotateDeg = thetaRotateDeg + 90
imgRotated = (sk.transform.rotate(
img, thetaRotateDeg, resize=True, mode='constant', cval=1))
return imgRotated
'''
run lenght encoding on number of ones in array of booleans/bits
'''
def runs_of_ones_array(bits):
bounded = np.hstack(([0], bits, [0]))
difs = np.diff(bounded)
run_starts, = np.where(difs > 0)
run_ends, = np.where(difs < 0)
return run_ends - run_starts
'''
extract staff height and staff space based on run lenght encoding of white bits in binary representation of each column in the image
----based on what the papers was doing
'''
def verticalRunLength(img):
# white runs
arr = []
for i in range(0, img.shape[1]):
a = runs_of_ones_array(img[:, i])
for x in a:
arr.append(x)
counts = np.bincount(arr)
staff_height = np.argmax(counts)
# black runs
arr = []
for i in range(0, img.shape[1]):
a = runs_of_ones_array(np.invert(img[:, i]))
for x in a:
arr.append(x)
# print(arr)
counts = np.bincount(arr)
staff_space = np.argmax(counts)
return staff_height, staff_space
'''
get frequency of start staffs in every row
'''
def get_lines_rows(img, T_LEN):
row_start_freq = np.zeros((1, img.shape[0]+5))[0]
row_starts = []
for i in range(0, img.shape[1]):
arr = runs_of_ones_array(img[:, i])
k = 0
j = 0
while j < img.shape[0]:
if img[j][i] == True:
if arr[k] <= T_LEN + 2 and arr[k] >= T_LEN - 2:
row_start_freq[j] += 1
j += arr[k]-1
else:
j += arr[k]
k += 1
j += 1
max_freq_row_start = 0
for r in row_start_freq:
max_freq_row_start = max(max_freq_row_start, r)
for i in range(len(row_start_freq)):
# Approximately, if the row "i" is frequently treated as a starting of staffs with this ratio
# by the most frequnt starting row, then consider it as a starting row of staffs.
if row_start_freq[i]/max_freq_row_start >= 0.12:
row_starts.append(i)
return [row_starts, row_start_freq, max_freq_row_start]
'''
remove staff lines from binary image
'''
def extractMusicalNotes(img, T_LEN):
staff_rows_starts, row_start_freq, max_freq_row_start = get_lines_rows(
img, T_LEN)
is_here = np.zeros((1, img.shape[0] + 10))[0]
for x in staff_rows_starts:
is_here[x] = 1
newImg = np.zeros(img.shape)
for i in range(0, img.shape[1]):
arr = runs_of_ones_array(img[:, i])
block_num = 0
row = 0
while row < img.shape[0]:
if img[row][i] == True:
found = False
for idx in range(0, int(1.5*T_LEN)):
if row - idx >= 0 and row - idx < img.shape[0]:
# and row_start_freq[row] / max_freq_row_start >= 0.1:
if is_here[row - idx]:
found = True
jump = T_LEN
row += jump
arr[block_num] -= jump
arr[block_num] = max(arr[block_num], 0)
if arr[block_num] > 0:
block_num -= 1
break
if found == False:
for item in range(arr[block_num]):
if row >= img.shape[0]:
break
newImg[row][i] = True
row += 1
row -= 1
block_num += 1
row += 1
return newImg
'''
remove musical notes from staff lines
'''
def removeMusicalNotes(img, T_LEN):
newImg = np.copy(img)
for i in range(0, img.shape[1]):
arr = runs_of_ones_array(img[:, i])
# print(arr)
k = 0
j = 0
while j < img.shape[0]:
if img[j][i] == True:
if arr[k] > T_LEN:
for x in range(0, arr[k]):
newImg[j][i] = False
j += 1
else:
j += arr[k]-1
k += 1
j += 1
return newImg
'''
restore staff liens after notes removal
'''
def restoreStaffLines(img, T_LEN, img_o):
newImg = np.copy(img)
for i in range(0, img.shape[1]):
arr = runs_of_ones_array(img_o[:, i])
# print(arr)
k = 0
j = 0
while j < img.shape[0]:
if img_o[j][i] == True:
if arr[k] > T_LEN:
for x in range(0, arr[k]):
try:
newImg[j][i] = False
if np.sum(img[j, 0:i])+np.sum(img[j, i:img.shape[1]]) >= 0.1*img.shape[1]:
newImg[j][i] = True
except:
pass
j += 1
else:
j += arr[k]-1
k += 1
j += 1
return newImg
'''
fix restored staff lines by connecting broken lines
'''
def fixStaffLines(staff_lines, staff_height, staff_space, img_o):
img = np.copy(staff_lines)
patch_height = 100
patch_width = staff_lines.shape[1]//15
ph = int(img.shape[0]/patch_height)
pw = int(img.shape[1]/patch_width)
for i in range(ph):
for j in range(pw):
patch = img[i*patch_height: (i+1)*patch_height,
j*patch_width: (j+1)*patch_width]
for k in range(patch.shape[0]):
x = np.sum(patch[k, :])
if x >= 0.2*patch.shape[1]:
patch[k, :] = img_o[i*patch_height: (
i+1)*patch_height, j*patch_width: (j+1)*patch_width][k, :]
return img
'''
get charachters corners from the staff line
'''
def char_seg(org_img):
# show_images([org_img])
img = np.copy(org_img)
toshow = [img]
labels = sk.measure.label(img, connectivity=1)
lbl_num = np.max(labels[:, :])
bounds = np.zeros((lbl_num+1, 4)) # [up, down, left, right]
bounds[:, 0] = 99999999
bounds[:, 2] = 99999999
for i in range(img.shape[0]):
for j in range(img.shape[1]):
if img[i, j]:
bounds[labels[i, j]][0] = int(min(bounds[labels[i, j]][0], i))
bounds[labels[i, j]][1] = int(max(bounds[labels[i, j]][1], i))
bounds[labels[i, j]][2] = int(min(bounds[labels[i, j]][2], j))
bounds[labels[i, j]][3] = int(max(bounds[labels[i, j]][3], j))
only_char_arr = []
# for i in range(bounds.shape[0]):
# if bounds[i][0] == 99999999:
# only_char_arr.append([-1])
# continue
# cur = np.copy(labels[int(bounds[i][0]):int(
# bounds[i][1]+1), int(bounds[i][2]):int(bounds[i][3]+1)])
# cur = cur == i
# # show_images([cur])
# only_char_arr.append(cur)
return [bounds, only_char_arr]
'''
extract filled note heads from image
'''
def extractCircleNotes(img_o, staff_space):
img = np.copy(img_o)
se = sk.morphology.disk(staff_space//2)
img = sk.morphology.binary_opening(img, se)
img = sk.morphology.binary_erosion(img, se)
img = sk.morphology.binary_erosion(img)
se = sk.morphology.disk(staff_space//4)
img = sk.morphology.binary_dilation(img, se)
return img
def classicLineSegmentation(img, staff_space=0):
org = np.copy(img)
lines = []
se = np.ones((staff_space+5, 2))
img = sk.morphology.binary_dilation(img, se)
horz_hist = np.sum(img, axis=1)
t = 0.25
i = 0
j = 0
while i < img.shape[0]:
if horz_hist[i]/img.shape[1] >= t:
j = i + 1
while j < img.shape[0] and horz_hist[j]/img.shape[1] >= t:
j += 1
r0 = int(max(0, i-staff_space*2-5))
r1 = int(min(img.shape[0], j+staff_space*2+5))
lines.append([r0, r1, 0, img.shape[1]])
i = j - 1
i += 1
return lines