-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlr.py
62 lines (45 loc) · 2.51 KB
/
lr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import numpy as np
import torchtext
from torchtext.vocab import build_vocab_from_iterator
from sklearn.preprocessing import OneHotEncoder
from sklearn.linear_model import LogisticRegression
class LogReg():
def __init__(self, df, replacement_level):
self.climber_vocab = build_vocab_from_iterator([df['Name'].values], min_freq=replacement_level, specials=['other'])
self.climber_vocab.set_default_index(self.climber_vocab['other'])
X = self.create_X(df)
y = df['Status'].values
self.lr = LogisticRegression(max_iter=1000, random_state=SEED).fit(X, y)
def create_X(self, df):
# Before one-hot encoding, set category levels to ensure we get the columns we want
climber_ints = self.climber_vocab(list(df['Name']))
climber_encoder = OneHotEncoder(categories=[list(range(len(self.climber_vocab)))], sparse_output=False)
climber_X = climber_encoder.fit_transform(np.array(climber_ints).reshape(-1,1))
level_encoder = OneHotEncoder(categories=[["Q", "S", "F"]], sparse_output=False)
level_X = level_encoder.fit_transform(df['Level'].values.reshape(-1,1))
problem_type_encoder = OneHotEncoder(categories=[["Top", "Zone"]], sparse_output=False)
problem_type_X = problem_type_encoder.fit_transform(df['Problem_category'].values.reshape(-1,1))
return np.hstack([climber_X, level_X, problem_type_X])
def predict(self, df):
return self.lr.predict_proba(self.create_X(df))[:, 1]
if __name__ == '__main__':
import pandas as pd
import pickle
from sklearn.model_selection import KFold
SEED = 42
K_FOLDS = 5
REPLACEMENT_LEVELS = [25, 50, 100, 250, 500, 1000]
df = pd.read_csv('data/men_data.csv')
kfold = KFold(n_splits=K_FOLDS, shuffle=True, random_state=SEED)
for fold, (train_idx, val_idx) in enumerate(kfold.split(df)):
train = df.iloc[train_idx]
for replacement_level in REPLACEMENT_LEVELS:
print(f"Training LR model for fold {fold}, replacement level {replacement_level}")
model = LogReg(train, replacement_level)
with open(f"models/lr/model_rl_{replacement_level}_fold_{fold}.pkl", 'wb') as f:
pickle.dump(model, f)
for replacement_level in REPLACEMENT_LEVELS:
print(f"Training LR model for full data, replacement level {replacement_level}")
model = LogReg(df, replacement_level)
with open(f"models/lr/model_rl_{replacement_level}_full_data.pkl", 'wb') as f:
pickle.dump(model, f)