-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain_gunet.py
executable file
·282 lines (218 loc) · 9.91 KB
/
main_gunet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
from models_gunet import GNet
from gunet_trainer import Trainer
from torch.autograd import Variable
from graph_sampler import GraphSampler
import argparse
import random
import time
import torch
import numpy as np
import pickle
import sklearn.metrics as metrics
import Analysis
import os
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
torch.manual_seed(0)
np.random.seed(0)
random.seed(0)
def get_args(num_shots=2, cv_number=5):
parser = argparse.ArgumentParser(description='Args for graph predition')
parser.add_argument('--mode', type=str, default='train', choices=['train', 'test'])
parser.add_argument('--v', type=str, default=1)
parser.add_argument('--data', type=str, default='Sample_dataset', choices = [ f.path[5:] for f in os.scandir("data") if f.is_dir() ])
parser.add_argument('-num_classes', type=int, default=2, help='seed')
parser.add_argument('-seed', type=int, default=1, help='seed')
parser.add_argument('-data', default='DD', help='data folder name')
parser.add_argument('-fold', type=int, default=1, help='fold (1..10)')
parser.add_argument('-num_epochs', type=int, default=1, help='epochs') #35
parser.add_argument('--num_shots', type=int, default=num_shots, help='number of shots') #100
parser.add_argument('-batch', type=int, default=1, help='batch size')
parser.add_argument('-lr', type=float, default=0.1, help='learning rate')
parser.add_argument('-weight_decay', type=float, default=0.01, help='weight decay')
parser.add_argument('-deg_as_tag', type=int, default=1, help='1 or degree')
parser.add_argument('-l_num', type=int, default=3, help='layer num')
parser.add_argument('-h_dim', type=int, default=48, help='hidden dim')
parser.add_argument('-l_dim', type=int, default=48, help='layer dim')
parser.add_argument('-drop_n', type=float, default=0.9, help='drop net')
parser.add_argument('-drop_c', type=float, default=0.9, help='drop output')
parser.add_argument('-act_n', type=str, default='ELU', help='network act')
parser.add_argument('-act_c', type=str, default='ELU', help='output act')
parser.add_argument('-ks', nargs='+', type=float, default=[0.9, 0.8, 0.7])
parser.add_argument('-acc_file', type=str, default='re', help='acc file')
parser.add_argument('--threshold', dest='threshold', default='mean',
help='threshold the graph adjacency matrix. Possible values: no_threshold, median, mean')
args, _ = parser.parse_known_args()
return args
def set_random(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
def app_run(args, G_data, fold_idx):
G_data.use_fold_data(fold_idx)
net = GNet(G_data.feat_dim, G_data.num_class, args)
trainer = Trainer(args, net, G_data)
trainer.train()
def evaluate(dataset, model, args, model_name):
"""
Parameters
----------
dataset : dataloader (dataloader for the validation/test dataset).
model_GCN : nn model (diffpool model).
args : arguments
threshold_value : float (threshold for adjacency matrices).
Description
----------
This methods performs the evaluation of the model on test/validation dataset
Returns
-------
test accuracy.
"""
model.eval()
labels = []
preds = []
for batch_idx, data in enumerate(dataset):
adj = Variable(data['adj'].float(), requires_grad=False).to(device)
labels.append(data['label'].long().numpy())
#batch_num_nodes=np.array([adj.shape[1]])
h0 = np.identity(adj.shape[1])
h0 = Variable(torch.from_numpy(h0).float(), requires_grad=False).cpu()
adj = torch.squeeze(adj)
ypred = model([adj] ,[h0])
_, indices = torch.max(ypred, 1)
preds.append(indices.cpu().data.numpy())
labels = np.hstack(labels)
preds = np.hstack(preds)
simple_r = {'labels':labels,'preds':preds}
with open("./gunet/Labels_and_preds/"+model_name+".pickle", 'wb') as f:
pickle.dump(simple_r, f)
result = {'prec': metrics.precision_score(labels, preds, average='macro'),
'recall': metrics.recall_score(labels, preds, average='macro'),
'acc': metrics.accuracy_score(labels, preds),
'F1': metrics.f1_score(labels, preds, average="micro")}
print("Test accuracy:", result['acc'])
return result['acc']
def train(args, train_dataset, val_dataset, model, model_name):
"""
Parameters
----------
args : arguments
train_dataset : dataloader (dataloader for the validation/test dataset).
val_dataset : dataloader (dataloader for the validation/test dataset).
model_DIFFPOOL : nn model (diffpool model).
threshold_value : float (threshold for adjacency matrices).
Description
----------
This methods performs the training of the model on train dataset and calls evaluate() method for evaluation.
Returns
-------
test accuracy.
"""
train_loss=[]
params = list(model.parameters())
optimizer = torch.optim.Adam(params, lr=args.lr, weight_decay=args.weight_decay)
for epoch in range(args.num_epochs):
print("Epoch ",epoch)
model.train()
total_time = 0
avg_loss = 0.0
preds = []
labels = []
for batch_idx, data in enumerate(train_dataset):
begin_time = time.time()
adj = Variable(data['adj'].float(), requires_grad=False).to(device)
label = Variable(data['label'].long()).to(device)
#adj_id = Variable(data['id'].int()).to(device)
h0 = np.identity(adj.shape[1])
h0 = Variable(torch.from_numpy(h0).float(), requires_grad=False).cpu()
adj = torch.squeeze(adj)
ypred = model([adj] ,[h0])
_, indices = torch.max(ypred, 1)
preds.append(indices.cpu().data.numpy())
labels.append(data['label'].long().numpy())
loss = model.loss_metric(ypred, label)
model.zero_grad()
loss.backward()
optimizer.step()
avg_loss += loss
elapsed = time.time() - begin_time
total_time += elapsed
if epoch==args.num_epochs-1:
Analysis.is_trained = True
preds = np.hstack(preds)
labels = np.hstack(labels)
print("Train accuracy : ", np.mean( preds == labels ))
test_acc = evaluate(val_dataset, model, args, model_name)
print('Avg loss: ', avg_loss, '; epoch time: ', total_time)
train_loss.append(avg_loss)
path = './gunet/weights/W_'+model_name+'.pickle'
if os.path.exists(path):
os.remove(path)
os.rename('Gunet_W.pickle', path)
los_p = {'loss':train_loss}
with open("./gunet/training_loss/Training_loss_"+model_name+".pickle", 'wb') as f:
pickle.dump(los_p, f)
torch.save(model,"./gunet/models/Gunet_"+model_name+".pt")
return test_acc
def create_data_loaders(train, validation):
print('Num training graphs: ', len(train),
'; Num test graphs: ', len(validation))
# minibatch
dataset_sampler = GraphSampler(train)
train_dataset_loader = torch.utils.data.DataLoader(
dataset_sampler,
batch_size = 1,
shuffle = False)
dataset_sampler = GraphSampler(validation)
val_dataset_loader = torch.utils.data.DataLoader(
dataset_sampler,
batch_size = 1,
shuffle = False)
return train_dataset_loader, val_dataset_loader
def cv_benchmark(dataset, view, cv_number):
cv = cv_number
model = "gunet"
name = str(cv)+"Fold"
model_name = "MainModel_"+name+"_"+dataset+ "_" + model
args = get_args()
print(args)
set_random(args.seed)
start = time.time()
if not os.path.exists('Folds'+str(cv)):
os.makedirs('Folds'+str(cv))
for i in range(cv):
print("CV : ",i)
with open('./Folds_views'+str(cv)+'/'+dataset+'_view_'+str(view)+'_folds_'+ str(cv) +'_fold_'+str(i)+'_train','rb') as f:
train_set = pickle.load(f)
with open('./Folds_views'+str(cv)+'/'+dataset+'_view_'+str(view)+'_folds_'+ str(cv) +'_fold_'+str(i)+'_test','rb') as f:
test_set = pickle.load(f)
feat_dim = train_set[0]['adj'].shape[0]
# dataloaders
train_loader, val_loader = create_data_loaders(train_set, test_set)
#test_loader = DataLoader(test_set,batch_size=1, shuffle=True)
# net
net = GNet(feat_dim, args.num_classes, args)
test_acc = train(args, train_loader, val_loader, net, model_name+"_CV_"+str(i)+"_view_"+str(view))
print("Test accuracy:"+str(test_acc))
print('load data using ------>', time.time()-start)
def two_shot_trainer(dataset, view, num_shots):
args = get_args(num_shots)
print(args)
set_random(args.seed)
start = time.time()
for i in range(args.num_shots):
model = "gunet"
model_name = "Few_Shot_"+dataset+"_"+model + str(i)
print("Shot : ",i)
with open('./Two_shot_samples_views/'+dataset+'_view_'+str(view)+'_shot_'+str(i)+'_train','rb') as f:
train_set = pickle.load(f)
with open('./Two_shot_samples_views/'+dataset+'_view_'+str(view)+'_shot_'+str(i)+'_test','rb') as f:
test_set = pickle.load(f)
feat_dim = train_set[0]['adj'].shape[0]
# dataloaders
train_loader, val_loader = create_data_loaders(train_set, test_set)
#test_loader = DataLoader(test_set,batch_size=1, shuffle=True)
# net
net = GNet(feat_dim, args.num_classes, args)
test_acc = train(args, train_loader, val_loader, net, model_name+"_view_"+str(view))
print("Test accuracy:"+str(test_acc))
print('load data using ------>', time.time()-start)