-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
55 lines (45 loc) · 1.6 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import os
import glob
import json
import time
import pickle
import datetime
import numpy as np
import bcolz
from sklearn.model_selection import StratifiedShuffleSplit
def save_array(fname, arr):
c=bcolz.carray(arr, rootdir=fname, mode='w')
c.flush()
def load_array(fname):
return bcolz.open(fname)[:]
def save_bbox_img(img, bbox_arr, filename):
new_img = Image.new('RGB', (img.width, img.height), (255, 255, 255))
new_img.paste(img)
draw = ImageDraw.Draw(new_img)
for i in range(0, len(bbox_arr), 4):
bbox = (bbox_arr[i + 0], bbox_arr[i + 1], bbox_arr[i + 2], bbox_arr[i + 3])
draw.line((bbox[0], bbox[1], bbox[2], bbox[1]), fill=(255, 0, 0))
draw.line((bbox[2], bbox[1], bbox[2], bbox[3]), fill=(255, 0, 0))
draw.line((bbox[2], bbox[3], bbox[0], bbox[3]), fill=(255, 0, 0))
draw.line((bbox[0], bbox[3], bbox[0], bbox[1]), fill=(255, 0, 0))
del draw
new_img.save(open(filename, 'wb'))
def read_bbox_json(filename):
boxes = {}
with open(filename) as f:
json_data = json.load(f)
for item in json_data:
fn = item['filename']
cnt = 0
for annotation in item['annotations']:
x = annotation['x']
y = annotation['y']
w = annotation['width']
h = annotation['height']
label = annotation['class']
if not fn in boxes:
boxes[fn] = {}
if not label in boxes[fn]:
boxes[fn][label] = []
boxes[fn][label].append([x, y, w, h])
return boxes