-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutils.py
71 lines (56 loc) · 1.84 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
from utils import *
import os
import copy
from tqdm import tqdm_notebook
import math
from torch.autograd import Variable as V
import torch.nn.functional as F
import torch
import numpy as np
import random
import itertools
import numpy as np
import matplotlib.pyplot as plt
def set_seed(seed):
"""
Set a random seed for numpy and PyTorch.
"""
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
def plot_confusion_matrix(cm, classes, normalize=False, title='Confusion matrix', cmap=plt.cm.Blues):
if normalize:
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
print("Normalized confusion matrix")
else:
print('Confusion matrix, without normalization')
print(cm)
plt.imshow(cm, interpolation='nearest', cmap=cmap)
plt.title(title)
plt.colorbar()
tick_marks = np.arange(len(classes))
plt.xticks(tick_marks, classes, rotation=45)
plt.yticks(tick_marks, classes)
fmt = '.2f' if normalize else 'd'
thresh = cm.max() / 2.
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
plt.text(j, i, format(cm[i, j], fmt), horizontalalignment="center", color="red" if cm[i, j] > thresh else "black")
plt.tight_layout()
plt.ylabel('True label')
plt.xlabel('Predicted label')
def get_confusion_matrix(target, output, n_label, epochs) :
stacked = torch.stack(
(target, output), dim =1
)
cmt = torch.zeros(n_label,n_label, dtype = torch.int64)
for p in stacked :
tl,pl = p.tolist()
cmt[tl,pl] = cmt[tl,pl] +1
cmt = cmt/epochs
classes = np.arange(0,n_label)
plt.figure(figsize=(10, 10))
plot_confusion_matrix(cmt, classes)