-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain_pmnist.py
727 lines (617 loc) · 32.1 KB
/
main_pmnist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
import torch.optim as optim
import torch.nn.functional as F
import matplotlib.pyplot as plt
import seaborn as sn
import pandas as pd
import argparse, time
from copy import deepcopy
import os, sys
from torchvision import datasets, transforms
from sklearn.utils import shuffle
from models.gan import *
from swag.posteriors import *
from swag.swag_utils import *
import math
mnist_dir = './data/'
pmnist_dir = './data/binary_pmnist'
class Net(torch.nn.Module):
def __init__(self,inputsize, n_hidden=100, num_classes=10):
super(Net, self).__init__()
ncha, size, _ = inputsize
self.relu = torch.nn.ReLU()
self.linear1 = torch.nn.Linear(ncha * size * size, n_hidden, bias=False)
self.linear2 = torch.nn.Linear(n_hidden, n_hidden, bias=False)
self.fc = torch.nn.Linear(n_hidden, num_classes, bias=False)
return
def forward(self, x):
h = x.view(x.size(0), -1)
h = self.relu(self.linear1(h))
h = self.relu(self.linear2(h))
y = self.fc(h)
return y
def get(seed=0, fixed_order=False, pc_valid=0.1):
data = {}
taskcla = []
size = [1, 28, 28]
nperm = 10 # 10 tasks
seeds = np.array(list(range(nperm)), dtype=int)
if not fixed_order:
seeds = shuffle(seeds, random_state=seed)
if not os.path.isdir(pmnist_dir):
os.makedirs(pmnist_dir)
# Pre-load
# MNIST
mean = (0.1307,)
std = (0.3081,)
dat = {}
dat['train'] = datasets.MNIST(mnist_dir, train=True, download=True, transform=transforms.Compose(
[transforms.ToTensor(), transforms.Normalize(mean, std)]))
dat['test'] = datasets.MNIST(mnist_dir, train=False, download=True, transform=transforms.Compose(
[transforms.ToTensor(), transforms.Normalize(mean, std)]))
for i, r in enumerate(seeds):
print(i, end=',')
sys.stdout.flush()
data[i] = {}
data[i]['name'] = 'pmnist-{:d}'.format(i)
data[i]['ncla'] = 10
for s in ['train', 'test']:
loader = torch.utils.data.DataLoader(dat[s], batch_size=1, shuffle=False)
data[i][s] = {'x': [], 'y': []}
for image, target in loader:
aux = image.view(-1).numpy()
aux = shuffle(aux, random_state=r * 100 + i)
image = torch.FloatTensor(aux).view(size)
data[i][s]['x'].append(image)
data[i][s]['y'].append(target.numpy()[0])
# "Unify" and save
for s in ['train', 'test']:
data[i][s]['x'] = torch.stack(data[i][s]['x']).view(-1, size[0], size[1], size[2])
data[i][s]['y'] = torch.LongTensor(np.array(data[i][s]['y'], dtype=int)).view(-1)
torch.save(data[i][s]['x'], os.path.join(os.path.expanduser(pmnist_dir), 'data' + str(r) + s + 'x.bin'))
torch.save(data[i][s]['y'], os.path.join(os.path.expanduser(pmnist_dir), 'data' + str(r) + s + 'y.bin'))
print()
else:
# Load binary files
for i, r in enumerate(seeds):
data[i] = dict.fromkeys(['name', 'ncla', 'train', 'test'])
data[i]['ncla'] = 10
data[i]['name'] = 'pmnist-{:d}'.format(i)
# Load
for s in ['train', 'test']:
data[i][s] = {'x': [], 'y': []}
data[i][s]['x'] = torch.load(os.path.join(os.path.expanduser(pmnist_dir), 'data' + str(r) + s + 'x.bin'))
data[i][s]['y'] = torch.load(os.path.join(os.path.expanduser(pmnist_dir), 'data' + str(r) + s + 'y.bin'))
# Validation
for t in data.keys():
r=np.arange(data[t]['train']['x'].size(0))
# r=np.array(shuffle(r,random_state=seed),dtype=int)
r=np.array(r,dtype=int)
nvalid=int(pc_valid*len(r))
ivalid=torch.LongTensor(r[:nvalid])
itrain=torch.LongTensor(r[nvalid:])
data[t]['valid'] = {}
data[t]['valid']['x'] = data[t]['train']['x'][ivalid].clone()
data[t]['valid']['y'] = data[t]['train']['y'][ivalid].clone()
data[t]['train']['x'] = data[t]['train']['x'][itrain].clone()
data[t]['train']['y'] = data[t]['train']['y'][itrain].clone()
# Others
n = 0
for t in data.keys():
taskcla.append((t, data[t]['ncla']))
n += data[t]['ncla']
data['ncla'] = n
return data, taskcla, size
def get_model(model):
return deepcopy(model.state_dict())
def set_model_(model,state_dict):
model.load_state_dict(deepcopy(state_dict))
return
def train (args, model, swag_model, device, epoch, x, y, optimizer,criterion, task_id):
model.train()
r=np.arange(x.size(0))
np.random.shuffle(r)
r=torch.LongTensor(r).to(device)
# Loop batches
for i in range(0,len(r),args.batch_size_train):
if i+args.batch_size_train<=len(r): b=r[i:i+args.batch_size_train]
else: b=r[i:]
data = x[b].view(-1,28*28)
data, target = data.to(device), y[b].to(device)
optimizer.zero_grad()
output = model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
# SWAG training
if epoch >= 2:
swag_model.collect_model(model)
def test(args, model, device, x, y, criterion, task_id):
model.eval()
total_loss = 0
total_num = 0
correct = 0
r = np.arange(x.size(0))
np.random.shuffle(r)
r = torch.LongTensor(r).to(device)
with torch.no_grad():
# Loop batches
for i in range(0, len(r), args.batch_size_test):
if i + args.batch_size_test <= len(r):
b = r[i:i + args.batch_size_test]
else:
b = r[i:]
data = x[b].view(-1, 28 * 28)
data, target = data.to(device), y[b].to(device)
output = model(data)
loss = criterion(output, target)
pred = output.argmax(dim=1, keepdim=True)
correct += pred.eq(target.view_as(pred)).sum().item()
total_loss += loss.data.cpu().numpy().item() * len(b)
total_num += len(b)
acc = 100. * correct / total_num
final_loss = total_loss / total_num
return final_loss, acc
def swag_test(args, swag_model, device, x, y, criterion):
if args.no_cov_mat==True:
cov_mat = False
else:
cov_mat = True
swag_model.sample(scale=1.0, cov=cov_mat, device=device)
swag_model.eval()
total_loss = 0
total_num = 0
correct = 0
r = np.arange(x.size(0))
np.random.shuffle(r)
r = torch.LongTensor(r).to(device)
with torch.no_grad():
# Loop batches
for i in range(0, len(r), args.batch_size_test):
if i + args.batch_size_test <= len(r):
b = r[i:i + args.batch_size_test]
else:
b = r[i:]
data = x[b].view(-1, 28 * 28)
data, target = data.to(device), y[b].to(device)
output = swag_model(data)
loss = criterion(output, target)
pred = output.argmax(dim=1, keepdim=True)
correct += pred.eq(target.view_as(pred)).sum().item()
total_loss += loss.data.cpu().numpy().item() * len(b)
total_num += len(b)
acc = 100. * correct / total_num
final_loss = total_loss / total_num
return final_loss, acc
def get_model_set(args, generator, swag_model, device, model_size, chunk_size, cov_mat, inputsize, curr_task, ncla):
model_set = {}
original_num_chunks = math.ceil(model_size / chunk_size)
_, remainder, mu, sigma = swag_model.chunk_sample(1.0, cov_mat, chunk_size, original_num_chunks)
for i in range(curr_task+1):
model_set[i] = []
for model_id in range(curr_task+1):
for _ in range(args.num_models):
chunkid = torch.arange(original_num_chunks * model_id, original_num_chunks * (model_id + 1)).to(device)
z = torch.rand(original_num_chunks, args.latent_dim).to(device)
fake_parameter = generator(z, chunkid).to('cpu')
fake_parameter = sigma * fake_parameter + mu # de-normalization
model_structure = Net(inputsize, args.n_hidden, ncla).to(device)
fake_parameter = fake_parameter.view(-1)[:-remainder]
new_model = param_insert(model_structure, fake_parameter).to(device)
model_set[model_id].append(new_model)
return model_set
def get_entropy(args, model_set, data, curr_task):
ent_set = torch.zeros(curr_task+1)
for i in range(len(model_set)):
prob_sum = 0
for model_sample in model_set[i]:
model_sample.eval()
outputs = model_sample(data)
prob = F.softmax(outputs, dim=1)
prob_sum += prob
prob_mean = prob_sum / args.num_models
ent = -torch.sum(prob_mean * torch.log(prob_mean))
ent_set[i] = ent
_, t_id = ent_set.view(-1, curr_task+1).min(1)
return t_id
def test_task_agnostic(args, model_set, device, x, y, criterion, curr_task):
total_loss = 0
total_num = 0
correct = 0
r = np.arange(x.size(0))
np.random.shuffle(r)
r = torch.LongTensor(r).to(device)
with torch.no_grad():
# Loop batches
for i in range(0, len(r), args.batch_size_test_t_ag):
if i + args.batch_size_test_t_ag <= len(r):
b = r[i:i + args.batch_size_test_t_ag]
else:
b = r[i:]
data = x[b].view(-1, 28 * 28)
data, target = data.to(device), y[b].to(device)
# inference task ID
t_id = get_entropy(args, model_set, data, curr_task)
new_model = model_set[int(t_id)][int(torch.randint(0, args.num_models, (1,)))] # int(torch.randint(0, args.num_models, (1,)))
new_model.eval()
output = new_model(data)
loss = criterion(output, target)
pred = output.argmax(dim=1, keepdim=True)
correct += pred.eq(target.view_as(pred)).sum().item()
total_loss += loss.data.cpu().numpy().item() * len(b)
total_num += len(b)
acc = 100. * correct / total_num
final_loss = total_loss / total_num
return final_loss, acc
def main(args):
tstart = time.time()
## Device Setting
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
if args.no_cov_mat==True:
cov_mat = False
else:
cov_mat = True
prev_generator = None
chunk_size = args.chunk_size
capa_exceed = False
torch.manual_seed(args.seed)
np.random.seed(args.seed)
## Load PMNIST DATASET
data, taskcla, inputsize = get(seed=args.seed, pc_valid=args.pc_valid)
acc_matrix = np.zeros((args.n_tasks, args.n_tasks))
criterion = torch.nn.CrossEntropyLoss()
task_id = 0
task_list = []
for k, ncla in taskcla:
print('*' * 100)
print('Task {:2d} ({:s})'.format(k, data[k]['name']))
print('*' * 100)
xtrain = data[k]['train']['x']
ytrain = data[k]['train']['y']
xvalid = data[k]['valid']['x']
yvalid = data[k]['valid']['y']
xtest = data[k]['test']['x']
ytest = data[k]['test']['y']
task_list.append(k)
lr = args.lr
print('-' * 40)
print('Task ID :{} | Learning Rate : {}'.format(task_id, lr))
print('-' * 40)
model = Net(inputsize, args.n_hidden, ncla).to(device)
model_size = sum(p.numel() for p in model.parameters() if p.requires_grad)
print("Model size: {:d}".format(model_size))
print('Model parameters ---')
swag_model = SWAG(base=Net(inputsize, args.n_hidden, ncla),
no_cov_mat=args.no_cov_mat,
max_num_models=args.max_num_models)
swag_model = swag_model.to(device)
optimizer = optim.SGD(model.parameters(), lr=lr)
for epoch in range(1, args.n_epochs + 1):
# Train
clock0 = time.time()
train(args, model, swag_model, device, epoch, xtrain, ytrain, optimizer, criterion, k)
clock1 = time.time()
tr_loss, tr_acc = test(args, model, device, xtrain, ytrain, criterion, k)
print('Epoch {:3d} | Train: loss={:.3f}, acc={:5.1f}% | time={:5.1f}ms |'
.format(epoch, tr_loss, tr_acc, 1000 * (clock1 - clock0)), end='')
# Validate
valid_loss, valid_acc = test(args, model, device, xvalid, yvalid, criterion, k)
print(' Valid: loss={:.3f}, acc={:5.1f}% |'.format(valid_loss, valid_acc), end='')
print()
# Test
print('-' * 40)
test_loss, test_acc = test(args, model, device, xtest, ytest, criterion, k)
swag_test_loss, swag_test_acc = swag_test(args, swag_model, device, xtest, ytest, criterion)
print('Test: loss={:.3f} , acc={:5.1f}%'.format(test_loss, test_acc))
print('SWAG Test: loss={:.3f} , acc={:5.1f}%'.format(swag_test_loss, swag_test_acc))
torch.save(swag_model,'./models_saved/pmnist_swag_model_' + str(k) + '.pt')
swag_model = torch.load('./models_saved/pmnist_swag_model_' + str(k) + '.pt')
# GAN training
generator, discriminator, capa_exceed = gan_training(args=args,
iter=k,
ncla=ncla,
inputsize=inputsize,
chunk_size=chunk_size,
swag_model=swag_model,
model_size=model_size,
data=data,
prev_g=prev_generator,
capa_exceed=capa_exceed,
device=device,
)
prev_generator = deepcopy(generator)
# save accuracy
jj = 0
generator.eval()
original_num_chunks = math.ceil(model_size / chunk_size)
num_chunks = original_num_chunks * (k + 1) # base_num_chunks = original_num_chunks - num_saved_chunks
_, remainder, mu, sigma = swag_model.chunk_sample(1.0, cov_mat, chunk_size, original_num_chunks)
for ii in np.array(task_list)[0:task_id + 1]:
curr_task = task_id
xtest = data[ii]['test']['x']
ytest = data[ii]['test']['y']
if args.task_agnostic == True:
model_set = get_model_set(args, generator, swag_model, device, model_size, chunk_size, cov_mat,
inputsize, curr_task, ncla)
_, acc_matrix[task_id, jj] = test_task_agnostic(args, model_set, device, xtest, ytest, criterion,
curr_task)
else:
chunkid = torch.arange(original_num_chunks * ii, original_num_chunks * (ii + 1)).to(device)
z = torch.rand(original_num_chunks, args.latent_dim).to(device)
fake_parameter = generator(z, chunkid).to('cpu')
fake_parameter = sigma * fake_parameter + mu # de-normalization
model_structure = Net(inputsize, args.n_hidden, ncla).to(device)
fake_parameter = fake_parameter.view(-1)[:-remainder]
new_model = param_insert(model_structure, fake_parameter).to(device)
_, acc_matrix[task_id, jj] = test(args, new_model, device, xtest, ytest, criterion, ii)
jj += 1
print('Accuracies =')
for i_a in range(task_id + 1):
print('\t', end='')
for j_a in range(acc_matrix.shape[1]):
print('{:5.1f}% '.format(acc_matrix[i_a, j_a]), end='')
print()
# update task id
task_id += 1
print('-' * 50)
# Simulation Results
print('Task Order : {}'.format(np.array(task_list)))
print('Final Avg Accuracy: {:5.2f}%'.format(acc_matrix[-1].mean()))
bwt = np.mean((acc_matrix[-1] - np.diag(acc_matrix))[:-1])
print('Backward transfer: {:5.2f}%'.format(bwt))
print('[Elapsed time = {:.1f} ms]'.format((time.time() - tstart) * 1000))
print('-' * 50)
# Plots
array = acc_matrix
df_cm = pd.DataFrame(array, index=[i for i in ["T1", "T2", "T3", "T4", "T5", "T6", "T7", "T8", "T9", "T10"]],
columns=[i for i in ["T1", "T2", "T3", "T4", "T5", "T6", "T7", "T8", "T9", "T10"]])
sn.set(font_scale=1.4) # for label size
sn.heatmap(df_cm, annot=True, annot_kws={"size": 10})
plt.show()
def gan_training(args, iter, ncla, inputsize, chunk_size, swag_model, model_size, data, prev_g=None, capa_exceed=False,
device=None):
MSELoss = nn.MSELoss()
Crossentropy = torch.nn.CrossEntropyLoss()
gan_batch_size = args.gan_batch_size
gan_epochs = args.gan_epochs
latent_dim = args.latent_dim
ra_lambda = args.ra_lambda
if args.no_cov_mat==True:
cov_mat = False
else:
cov_mat = True
# num_model_sample = self.args.num_model_sample
if device is None:
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
if prev_g is not None:
prev_g.eval()
# Number of chunks
if capa_exceed == True: # chunk_size == 2000 / capa_exceed == True
prev_chunk_size = chunk_size / 2
prev_num_chunks = math.ceil(model_size / prev_chunk_size)
original_num_chunks = math.ceil(model_size / chunk_size)
num_chunks = original_num_chunks * (iter + 1) # base_num_chunks = original_num_chunks - num_saved_chunks
_, _, mu, sigma = swag_model.chunk_sample(1.0, cov_mat, chunk_size, original_num_chunks)
# Initialize G and D
generator = Generator(latent_dim, iter, chunk_size, num_chunks).to(device)
discriminator = Discriminator(iter, chunk_size, num_chunks).to(device)
g_optimizer = torch.optim.Adam(generator.parameters(), lr=args.gan_lr,
betas=(args.gan_b1, args.gan_b2))
d_optimizer = torch.optim.Adam(discriminator.parameters(), lr=args.gan_lr,
betas=(args.gan_b1, args.gan_b2))
# GAN model size
generator_model_size = sum(p.numel() for p in generator.parameters() if p.requires_grad)
discriminator_model_size = sum(p.numel() for p in discriminator.parameters() if p.requires_grad)
print('G model size: {:d}, D model size: {:d}'.format(generator_model_size, discriminator_model_size))
# Training phase
ChunksMSE = torch.zeros(iter + 1, original_num_chunks) # MSE between generated parameters and real parameters
for epoch in range(gan_epochs):
print('Task: {:d}, Epoch: {:d}, learning rate: {:.4f}, Chunk size: {:d}'.format(
iter, epoch, args.gan_lr, chunk_size))
# Training iteration in one epoch
for i in range(50000 * (iter + 1) // gan_batch_size):
sampled_model, remainder, means, stds = swag_model.chunk_sample(1.0, cov_mat, chunk_size,
original_num_chunks)
# Training Discriminator
discriminator.train()
generator.eval()
# Create (real sample, condition) pair for training cGAN
if iter == 0:
chunkid = torch.randint(num_chunks, size=(gan_batch_size,)).to(device)
real_parameter = sampled_model[chunkid].to(device)
# Pseudo-rehearsal: considering generated parameter as real one sampled from BNN
else:
chunkid = torch.randint(num_chunks, size=(gan_batch_size,))
curr_idx = np.where(chunkid >= original_num_chunks * iter)
prev_idx = np.where(chunkid < original_num_chunks * iter)
prev_chunkid = chunkid[prev_idx].to(device)
curr_chunkid = chunkid[curr_idx].to(device)
chunkid = torch.cat([prev_chunkid, curr_chunkid]).to(device)
if capa_exceed == False: # chunk_size == 1000 / capa_exceed == False
num_generated = prev_chunkid.size(0)
z_generated = torch.randn(num_generated, latent_dim).to(device)
param_generated = prev_g(z_generated, prev_chunkid)
# When GAN expanded
else:
prev_model_list = []
for prev_t in range(iter):
prev_g_chunkid = torch.arange(prev_num_chunks * prev_t,
prev_num_chunks * (prev_t + 1)).to(device)
z_ = torch.randn(prev_num_chunks, latent_dim).to(device)
prev_model = prev_g(z_, prev_g_chunkid).detach().view(1, -1)
difference = int(original_num_chunks * chunk_size - prev_num_chunks * prev_chunk_size)
if difference >= 0:
zeros = torch.zeros(1, difference).to(device)
prev_model = torch.cat((prev_model, zeros), dim=1).view(-1, chunk_size)
else:
prev_model = prev_model[0][:difference].view(-1, chunk_size)
prev_model_list.append(prev_model)
prev_model = torch.cat(prev_model_list)
param_generated = prev_model[prev_chunkid]
param_sampled = sampled_model[curr_chunkid-(original_num_chunks*iter)].to(device)
real_parameter = torch.cat([param_generated, param_sampled], dim=0)
shuffle_idx = torch.randperm(gan_batch_size)
chunkid = chunkid[shuffle_idx]
real_parameter = real_parameter[shuffle_idx]
z = torch.randn(gan_batch_size, latent_dim).to(device)
d_optimizer.zero_grad()
fake_parameter = generator(z, chunkid)
real_validity = discriminator(real_parameter, chunkid)
fake_validity = discriminator(fake_parameter, chunkid)
gradient_penalty = compute_gradient_penalty(discriminator, real_parameter.data, fake_parameter.data,
chunkid, device)
d_loss = -torch.mean(real_validity) + torch.mean(fake_validity) + args.lambda_gp * gradient_penalty
d_loss.backward()
d_optimizer.step()
# Training Generator
g_optimizer.zero_grad()
if i % args.num_critic == 0:
discriminator.eval()
generator.train()
fake_parameter = generator(z, chunkid)
fake_validity = discriminator(fake_parameter, chunkid)
if iter == 0:
replay_alignment = 0
# Replay alignment
else:
prev_idx = torch.where(chunkid < original_num_chunks * iter)
prev_chunkid = chunkid[prev_idx].to(device)
num_generated = prev_chunkid.size(0)
z_generated = torch.randn(num_generated, latent_dim).to(device)
fake_curr = generator(z_generated, prev_chunkid)
if capa_exceed == False: # chunk_size == 1000 / capa_exceed == False
fake_prev = prev_g(z_generated, prev_chunkid).detach()
# When GAN expanded
else:
fake_prev_list = []
for idx in range(num_generated):
z_ = z_generated[idx].view(1,-1)
z_cmt = deepcopy(z_)
for _ in range(prev_num_chunks-1):
z_ = torch.cat((z_, z_cmt))
prev_model_list = []
for prev_t in range(iter):
prev_g_chunkid = torch.arange(prev_num_chunks * prev_t,
prev_num_chunks * (prev_t + 1)).to(device)
prev_model = prev_g(z_, prev_g_chunkid).detach().view(1, -1)
difference = int(original_num_chunks*chunk_size - prev_num_chunks*prev_chunk_size)
if difference >= 0:
zeros = torch.zeros(1, difference).to(device)
prev_model = torch.cat((prev_model, zeros), dim=1).view(-1, chunk_size)
else:
prev_model = prev_model[0][:difference].view(-1, chunk_size)
prev_model_list.append(prev_model)
prev_model = torch.cat(prev_model_list)
fake_prev = prev_model[prev_chunkid[idx]].view(1, -1)
fake_prev_list.append(fake_prev)
fake_prev = torch.cat(fake_prev_list, dim=0)
replay_alignment = MSELoss(fake_curr, fake_prev)
prev_model = []
fake_prev = []
prev_model_list = []
g_loss = -torch.mean(fake_validity) + ra_lambda * replay_alignment
g_loss.backward()
g_optimizer.step()
# Evaluation phase
if (epoch+1) % 100 == 0:
# BNN sampling only for checking chunk MSE
sampled_model_list = []
for iteration_ in range(iter + 1):
swag_model = torch.load('./models_saved/pmnist_swag_model_'+str(iteration_)+'.pt')
sampled_model, remainder, means, stds = swag_model.chunk_sample(1.0, cov_mat, chunk_size,
original_num_chunks)
sampled_model = stds * sampled_model + means # de-normalization
sampled_model_list.append(sampled_model)
sampled_model_list = torch.cat(sampled_model_list).to('cpu')
generator.eval()
for t in range(iter + 1):
chunkid = torch.arange(original_num_chunks*t, original_num_chunks*(t+1)).to(device)
z = torch.rand(original_num_chunks, args.latent_dim).to(device)
fake_parameter = generator(z, chunkid).to('cpu')
fake_parameter = sigma * fake_parameter + mu # de-normalization
# Calculating MSE for each chunks
chunk_mse = torch.mean(torch.square(
fake_parameter - sampled_model_list[original_num_chunks * t:original_num_chunks * (t + 1)]),
dim=1)
ChunksMSE[t] = chunk_mse
if (epoch+1) == gan_epochs and t == iter:
capa_exceed = torch.sum(chunk_mse > args.mse_threshold) > 0
model_structure = Net(inputsize, args.n_hidden, ncla).to(device)
fake_parameter = fake_parameter.view(-1)[:-remainder]
new_model = param_insert(model_structure, fake_parameter).to(device)
# bn_update(new_model, trainloader, device)
xtest = data[t]['test']['x']
ytest = data[t]['test']['y']
test_loss, test_acc = test(args, new_model, device, xtest, ytest, Crossentropy, t)
# task_acc[iter][t] = 100. * correct / total
print('Task {:d} Test Loss: {:.4f} Accuracy: {:.4f}'.format(t, test_loss, test_acc))
print('Task: {:d}, Chunk MSE: \n'.format(t), chunk_mse)
print()
if (epoch+1) == gan_epochs and capa_exceed == True:
print("\nTask: {:d}, GAN Capacity: Exceeded\n".format(iter))
return generator, discriminator, capa_exceed
if __name__ == "__main__":
# Training parameters
parser = argparse.ArgumentParser(description='Sequential PMNIST with GPM')
parser.add_argument('--batch_size_train', type=int, default=10, metavar='N', # 10
help='input batch size for training (default: 10)')
parser.add_argument('--batch_size_test', type=int, default=64, metavar='N',
help='input batch size for testing (default: 64)')
parser.add_argument('--n_epochs', type=int, default=5, metavar='N',
help='number of training epochs/task (default: 5)')
parser.add_argument('--seed', type=int, default=2, metavar='S',
help='random seed (default: 2)')
parser.add_argument('--pc_valid',default=0.1,type=float,
help='fraction of training data used for validation')
# Optimizer parameters
parser.add_argument('--lr', type=float, default=0.01, metavar='LR',
help='learning rate (default: 0.01)')
parser.add_argument('--momentum', type=float, default=0.9, metavar='M',
help='SGD momentum (default: 0.9)')
parser.add_argument('--lr_min', type=float, default=1e-5, metavar='LRM',
help='minimum lr rate (default: 1e-5)')
parser.add_argument('--lr_patience', type=int, default=6, metavar='LRP',
help='hold before decaying lr (default: 6)')
parser.add_argument('--lr_factor', type=int, default=2, metavar='LRF',
help='lr decay factor (default: 2)')
# Architecture
parser.add_argument('--n_hidden', type=int, default=100, metavar='NH',
help='number of hidden units in MLP (default: 100)')
parser.add_argument('--n_outputs', type=int, default=10, metavar='NO',
help='number of output units in MLP (default: 10)')
parser.add_argument('--n_tasks', type=int, default=10, metavar='NT',
help='number of tasks (default: 10)')
# SWAG(BNN)
parser.add_argument('--no_cov_mat', default=True)
parser.add_argument('--max_num_models', type=int, default=20)
# GAN
parser.add_argument('--chunk_size', default=10000, type=int,
help='the size of chunk output of GAN')
parser.add_argument('--gan_batch_size', default=256, type=int,
help='the batch size of GAN')
parser.add_argument('--mse_threshold', default=0.001, type=float,
help='')
parser.add_argument('--gan_epochs', default=200, type=int,
help='the number of training epoch of GAN')
parser.add_argument('--latent_dim', default=100, type=int,
help='the size of latent vector of GAN')
parser.add_argument('--ra_lambda', default=50.0)
parser.add_argument('--gan_lr', default=0.001, type=float,
help='the learning rate of GAN')
parser.add_argument('--gan_b1', default=0.5, type=float,
help='adam: decay of first order momentum of gradient')
parser.add_argument('--gan_b2', default=0.999, type=float,
help='adam: decay of first order momentum of gradient')
parser.add_argument('--num_critic', default=5, type=int,
help='the number of training steps for discriminator per iter')
parser.add_argument('--lambda_gp', default=10, type=float, help='')
parser.add_argument('--task_agnostic', default=True)
parser.add_argument('--num_models', default=30)
parser.add_argument('--task_ag', default='ent', type=str, help='')
parser.add_argument('--batch_size_test_t_ag', default=1, type=int)
args = parser.parse_args()
print('='*100)
print('Arguments =')
for arg in vars(args):
print('\t'+arg+':',getattr(args,arg))
print('='*100)
main(args)