forked from andabi/deep-voice-conversion
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathhparams.py
92 lines (70 loc) · 1.82 KB
/
hparams.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
# -*- coding: utf-8 -*-
#/usr/bin/python2
# path
## local
data_path_base = './datasets'
logdir_path = './logdir'
class Default:
# signal processing
sr = 16000 # Sampling rate.
frame_shift = 0.005 # seconds
frame_length = 0.025 # seconds
n_fft = 512
hop_length = int(sr*frame_shift) # 80 samples. This is dependent on the frame_shift.
win_length = int(sr*frame_length) # 400 samples. This is dependent on the frame_length.
preemphasis = 0.97
n_mfcc = 40
n_iter = 60 # Number of inversion iterations
n_mels = 80
duration = 2
# model
hidden_units = 256 # alias = E
num_banks = 16
num_highway_blocks = 4
norm_type = 'ins' # a normalizer function. value: bn, ln, ins, or None
t = 1.0 # temperature
dropout_rate = 0.2
# train
batch_size = 32
class Train1:
# path
data_path = 'datasets/timit/TIMIT/TRAIN/*/*/*.WAV'
# model
hidden_units = 256 # alias = E
num_banks = 16
num_highway_blocks = 4
norm_type = 'ins' # a normalizer function. value: bn, ln, ins, or None
t = 1.0 # temperature
dropout_rate = 0.2
# train
batch_size = 32
lr = 0.0003
num_epochs = 1000
save_per_epoch = 2
class Test1:
# path
data_path = 'datasets/timit/TIMIT/TEST/*/*/*.WAV'
# test
batch_size = 32
class Train2:
# path
data_path = 'datasets/arctic/slt/*.wav'
# model
hidden_units = 512 # alias = E
num_banks = 16
num_highway_blocks = 8
norm_type = 'ins' # a normalizer function. value: bn, ln, ins, or None
t = 1.0 # temperature
dropout_rate = 0.2
# train
batch_size = 32
lr = 0.0005
num_epochs = 1000
save_per_epoch = 50
class Test2:
# test
batch_size = 32
class Convert:
# convert
batch_size = 2
emphasis_magnitude = 1.2