forked from brannondorsey/midi-rnn
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutils.py
261 lines (209 loc) · 9.16 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
import os, glob, random
import pretty_midi
import numpy as np
from keras.models import model_from_json
from multiprocessing import Pool as ThreadPool
def log(message, verbose):
if verbose:
print('[*] {}'.format(message))
def parse_midi(path):
midi = None
try:
midi = pretty_midi.PrettyMIDI(path)
midi.remove_invalid_notes()
except Exception as e:
raise Exception(("%s\nerror readying midi file %s" % (e, path)))
return midi
def get_percent_monophonic(pm_instrument_roll):
mask = pm_instrument_roll.T > 0
notes = np.sum(mask, axis=1)
n = np.count_nonzero(notes)
single = np.count_nonzero(notes == 1)
if single > 0:
return float(single) / float(n)
elif single == 0 and n > 0:
return 0.0
else: # no notes of any kind
return 0.0
def filter_monophonic(pm_instruments, percent_monophonic=0.99):
return [i for i in pm_instruments if \
get_percent_monophonic(i.get_piano_roll()) >= percent_monophonic]
# if the experiment dir doesn't exist create it and its subfolders
def create_experiment_dir(experiment_dir, verbose=False):
# if the experiment directory was specified and already exists
if experiment_dir != 'experiments/default' and \
os.path.exists(experiment_dir):
# raise an error
raise Exception('Error: Invalid --experiemnt_dir, {} already exists' \
.format(experiment_dir))
# if the experiment directory was not specified, create a new numeric folder
if experiment_dir == 'experiments/default':
experiments = os.listdir('experiments')
experiments = [dir_ for dir_ in experiments \
if os.path.isdir(os.path.join('experiments', dir_))]
most_recent_exp = 0
for dir_ in experiments:
try:
most_recent_exp = max(int(dir_), most_recent_exp)
except ValueError as e:
# ignrore non-numeric folders in experiments/
pass
experiment_dir = os.path.join('experiments',
str(most_recent_exp + 1).rjust(2, '0'))
os.mkdir(experiment_dir)
log('Created experiment directory {}'.format(experiment_dir), verbose)
os.mkdir(os.path.join(experiment_dir, 'checkpoints'))
log('Created checkpoint directory {}'.format(os.path.join(experiment_dir, 'checkpoints')),
verbose)
os.mkdir(os.path.join(experiment_dir, 'tensorboard-logs'))
log('Created log directory {}'.format(os.path.join(experiment_dir, 'tensorboard-logs')),
verbose)
return experiment_dir
# load data with a lazzy loader
def get_data_generator(midi_paths,
window_size=20,
batch_size=32,
num_threads=8,
max_files_in_ram=170):
if num_threads > 1:
# load midi data
pool = ThreadPool(num_threads)
load_index = 0
while True:
load_files = midi_paths[load_index:load_index + max_files_in_ram]
# print('length of load files: {}'.format(len(load_files)))
load_index = (load_index + max_files_in_ram) % len(midi_paths)
# print('loading large batch: {}'.format(max_files_in_ram))
# print('Parsing midi files...')
# start_time = time.time()
if num_threads > 1:
parsed = pool.map(parse_midi, load_files)
else:
parsed = map(parse_midi, load_files)
# print('Finished in {:.2f} seconds'.format(time.time() - start_time))
# print('parsed, now extracting data')
data = _windows_from_monophonic_instruments(parsed, window_size)
batch_index = 0
while batch_index + batch_size < len(data[0]):
# print('getting data...')
# print('yielding small batch: {}'.format(batch_size))
res = (data[0][batch_index: batch_index + batch_size],
data[1][batch_index: batch_index + batch_size])
yield res
batch_index = batch_index + batch_size
# probably unneeded but why not
del parsed # free the mem
del data # free the mem
def save_model(model, model_dir):
with open(os.path.join(model_dir, 'model.json'), 'w') as f:
f.write(model.to_json())
def load_model_from_checkpoint(model_dir):
'''Loads the best performing model from checkpoint_dir'''
with open(os.path.join(model_dir, 'model.json'), 'r') as f:
model = model_from_json(f.read())
epoch = 0
newest_checkpoint = max(glob.iglob(model_dir +
'/checkpoints/*.hdf5'),
key=os.path.getctime)
if newest_checkpoint:
epoch = int(newest_checkpoint[-22:-19])
model.load_weights(newest_checkpoint)
return model, epoch
def generate(model, seeds, window_size, length, num_to_gen, instrument_name):
# generate a pretty midi file from a model using a seed
def _gen(model, seed, window_size, length):
generated = []
# ring buffer
buf = np.copy(seed).tolist()
while len(generated) < length:
arr = np.expand_dims(np.asarray(buf), 0)
pred = model.predict(arr)
# argmax sampling (NOT RECOMMENDED), or...
# index = np.argmax(pred)
# prob distrobuition sampling
index = np.random.choice(range(0, seed.shape[1]), p=pred[0])
pred = np.zeros(seed.shape[1])
pred[index] = 1
generated.append(pred)
buf.pop(0)
buf.append(pred)
return generated
midis = []
for i in range(0, num_to_gen):
seed = seeds[random.randint(0, len(seeds) - 1)]
gen = _gen(model, seed, window_size, length)
midis.append(_network_output_to_midi(gen, instrument_name))
return midis
# create a pretty midi file with a single instrument using the one-hot encoding
# output of keras model.predict.
def _network_output_to_midi(windows,
instrument_name='Acoustic Grand Piano',
allow_represses=False):
# Create a PrettyMIDI object
midi = pretty_midi.PrettyMIDI()
# Create an Instrument instance for a cello instrument
instrument_program = pretty_midi.instrument_name_to_program(instrument_name)
instrument = pretty_midi.Instrument(program=instrument_program)
cur_note = None # an invalid note to start with
cur_note_start = None
clock = 0
# Iterate over note names, which will be converted to note number later
for step in windows:
note_num = np.argmax(step) - 1
# a note has changed
if allow_represses or note_num != cur_note:
# if a note has been played before and it wasn't a rest
if cur_note is not None and cur_note >= 0:
# add the last note, now that we have its end time
note = pretty_midi.Note(velocity=127,
pitch=int(cur_note),
start=cur_note_start,
end=clock)
instrument.notes.append(note)
# update the current note
cur_note = note_num
cur_note_start = clock
# update the clock
clock = clock + 1.0 / 4
# Add the cello instrument to the PrettyMIDI object
midi.instruments.append(instrument)
return midi
# returns X, y data windows from all monophonic instrument
# tracks in a pretty midi file
def _windows_from_monophonic_instruments(midi, window_size):
X, y = [], []
for m in midi:
if m is not None:
melody_instruments = filter_monophonic(m.instruments, 1.0)
for instrument in melody_instruments:
if len(instrument.notes) > window_size:
windows = _encode_sliding_windows(instrument, window_size)
for w in windows:
X.append(w[0])
y.append(w[1])
return (np.asarray(X), np.asarray(y))
# one-hot encode a sliding window of notes from a pretty midi instrument.
# This approach uses the piano roll method, where each step in the sliding
# window represents a constant unit of time (fs=4, or 1 sec / 4 = 250ms).
# This allows us to encode rests.
# expects pm_instrument to be monophonic.
def _encode_sliding_windows(pm_instrument, window_size):
roll = np.copy(pm_instrument.get_piano_roll(fs=4).T)
# trim beginning silence
summed = np.sum(roll, axis=1)
mask = (summed > 0).astype(float)
roll = roll[np.argmax(mask):]
# transform note velocities into 1s
roll = (roll > 0).astype(float)
# calculate the percentage of the events that are rests
# s = np.sum(roll, axis=1)
# num_silence = len(np.where(s == 0)[0])
# print('{}/{} {:.2f} events are rests'.format(num_silence, len(roll), float(num_silence)/float(len(roll))))
# append a feature: 1 to rests and 0 to notes
rests = np.sum(roll, axis=1)
rests = (rests != 1).astype(float)
roll = np.insert(roll, 0, rests, axis=1)
windows = []
for i in range(0, roll.shape[0] - window_size - 1):
windows.append((roll[i:i + window_size], roll[i + window_size + 1]))
return windows