You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
- --name_list: a comma-separated string of column names or identifiers, converted to a list of strings representing columns that contain labels (y). This separates y columns from the rest (X features). (Default: Yield1,Yield2,Yield3,Yield4,Yield5)
120
+
- --test: a flag for validating the model; not required to run inside the active learning loop. If not set, skip the validating step.
121
+
- --nb_rep NB_REP: the number of test repetitions for validating the model behavior. 80% of data is randomly separated for training, and 20% is used for testing. (Default: 100)
122
+
- --flatten: a flag to indicate whether to flatten Y data. If set, treats each repetition in the same experiment independently; multiple same X values with different y outputs are modeled. Else, calculates the average of y across repetitions and only model with y average.
123
+
- --seed SEED: the random seed value used forreproducibilityin random operations. (Default: 85)
124
+
- --nb_new_data_predict: The number of new data points sampled from all possible cases. (Default: 1000)
125
+
- --nb_new_data: The number of new data points selected from the generated ones. These are the data points labeled after active learning loops. `nb_new_data_predict` must be greater than `nb_new_data` to be meaningful. (Default: 50)
126
+
- --parameter_step: The step size used to decrement the maximum predefined concentration sequentially. For example, if the maximum concentration is `max`, the sequence of concentrations is calculated as: `max - 1 * parameter_step`, `max - 2 * parameter_step`, `max - 3 * parameter_step`, and so on. Each concentration is a candidate forexperimental testing. Smaller steps resultin more possible combinations to sample. (Default: 10)
127
+
- --n_group: parameter for the cluster margin algorithm, specifying the number of groups into which generated data will be clustered. (Default: 15)
128
+
- --km: parameter for the cluster margin algorithm, specifying the number of data points for the first selection. Ensure `nb_new_data_predict > ks > km`. (Default: 50)
129
+
- --ks: parameter for the cluster margin algorithm, specifying the number of data points for the second selection. This is also similar to `nb_new_data`. (Default: 20)
130
+
- --plot: a flag to indicate whether to generate all plots for analysis visualization.
131
+
- --save_plot: a flag to indicate whether to save all generated plots.
132
+
- --verbose: flag to indicate whether to print all messages to the console.
133
+
105
134
### Example
106
135
107
136
Here is an example of how to run the program with sample data:
0 commit comments