diff --git a/src/pytimetk/core/rolling.py b/src/pytimetk/core/rolling.py index 857f527c..1e2983ed 100644 --- a/src/pytimetk/core/rolling.py +++ b/src/pytimetk/core/rolling.py @@ -99,10 +99,11 @@ def augment_rolling( ``` ```{python} - # This example demonstrates the use of both string-named functions - # and lambda functions on a rolling window. + # Example 1 - Using a single window size and a single function name, pandas engine + # This example demonstrates the use of both string-named functions and lambda functions on a rolling window. # We specify a list of window sizes: [2,7]. # As a result, the output will have computations for both window sizes 2 and 7. + # Note - It's preferred to use built-in or configurable functions instead of lambda functions for performance reasons. rolled_df = ( df @@ -115,16 +116,18 @@ def augment_rolling( 'mean', # Built-in mean function ('std', lambda x: x.std()) # Lambda function to compute standard deviation ], - threads = 1 # Disabling parallel processing + threads = 1, # Disabling parallel processing + engine = 'pandas' # Using pandas engine ) ) display(rolled_df) ``` ```{python} - # Example showcasing the use of string function names and lambda functions - # applied on rolling windows. + # Example 2 - Multiple groups, pandas engine + # Example showcasing the use of string function names and lambda functions applied on rolling windows. # The `window` tuple (1,3) will generate window sizes of 1, 2, and 3. + # Note - It's preferred to use built-in or configurable functions instead of lambda functions for performance reasons. rolled_df = ( df @@ -136,19 +139,37 @@ def augment_rolling( window_func = [ 'mean', # Using built-in mean function ('std', lambda x: x.std()) # Lambda function for standard deviation - ] + ], + threads = 1, # Disabling parallel processing + engine = 'pandas' # Using pandas engine + ) + ) + display(rolled_df) + ``` + + ```{python} + # Example 3 - Multiple groups, polars engine + + rolled_df = ( + df + .groupby('id') + .augment_rolling( + date_column = 'date', + value_column = 'value', + window = (1,3), # Specifying a range of window sizes + window_func = [ + 'mean', # Using built-in mean function + 'std', # Using built-in standard deviation function + ], + engine = 'polars' # Using polars engine ) ) display(rolled_df) ``` ''' - # Ensure data is a DataFrame or a GroupBy object + # Checks check_dataframe_or_groupby(data) - - # Ensure date column exists and is properly formatted check_date_column(data, date_column) - - # Ensure value column(s) exist check_value_column(data, value_column) # Convert string value column to list for consistency