forked from project-chip/connectedhomeip
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGenericConfigurationManagerImpl.ipp
783 lines (657 loc) · 28.3 KB
/
GenericConfigurationManagerImpl.ipp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
/*
*
* Copyright (c) 2020-2022 Project CHIP Authors
* Copyright (c) 2019-2020 Google LLC.
* Copyright (c) 2018 Nest Labs, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/**
* @file
* Contains non-inline method definitions for the
* GenericConfigurationManagerImpl<> template.
*/
#ifndef GENERIC_CONFIGURATION_MANAGER_IMPL_CPP
#define GENERIC_CONFIGURATION_MANAGER_IMPL_CPP
#include <FirmwareBuildTime.h>
#include <ble/Ble.h>
#include <crypto/CHIPCryptoPAL.h>
#include <crypto/RandUtils.h>
#include <inttypes.h>
#include <lib/core/CHIPConfig.h>
#include <lib/support/Base64.h>
#include <lib/support/BytesToHex.h>
#include <lib/support/CHIPMem.h>
#include <lib/support/CodeUtils.h>
#include <lib/support/SafeInt.h>
#include <lib/support/ScopedBuffer.h>
#include <platform/BuildTime.h>
#include <platform/CommissionableDataProvider.h>
#include <platform/DeviceControlServer.h>
#include <platform/internal/CHIPDeviceLayerInternal.h>
#include <platform/internal/GenericConfigurationManagerImpl.h>
#include <platform/internal/GenericDeviceInstanceInfoProvider.ipp>
#if CHIP_DEVICE_CONFIG_ENABLE_THREAD
#include <platform/ThreadStackManager.h>
#endif
// TODO : may be we can make it configurable
#define BLE_ADVERTISEMENT_VERSION 0
namespace chip {
namespace DeviceLayer {
namespace Internal {
static Optional<System::Clock::Seconds32> sFirmwareBuildChipEpochTime;
#if CHIP_USE_TRANSITIONAL_COMMISSIONABLE_DATA_PROVIDER
// Legacy version of CommissionableDataProvider used for a grace period
// to a transition where all ConfigurationManager customers move to
// provide their own impl of CommissionableDataProvider interface.
template <class ConfigClass>
class LegacyTemporaryCommissionableDataProvider : public CommissionableDataProvider
{
public:
// GenericConfigurationManagerImpl will own a LegacyTemporaryCommissionableDataProvider which
// *refers back to that GenericConfigurationManagerImpl*, due to how CRTP-based
// storage APIs are defined. This is a bit unclean, but only applicable to the
// transition path when `CHIP_USE_TRANSITIONAL_COMMISSIONABLE_DATA_PROVIDER` is true.
// This circular dependency is NOT needed by CommissionableDataProvider, but required
// to keep legacy code running.
LegacyTemporaryCommissionableDataProvider(GenericConfigurationManagerImpl<ConfigClass> & configManager) :
mGenericConfigManager(configManager)
{}
CHIP_ERROR GetSetupDiscriminator(uint16_t & setupDiscriminator) override;
CHIP_ERROR SetSetupDiscriminator(uint16_t setupDiscriminator) override;
CHIP_ERROR GetSpake2pIterationCount(uint32_t & iterationCount) override;
CHIP_ERROR GetSpake2pSalt(MutableByteSpan & saltBuf) override;
CHIP_ERROR GetSpake2pVerifier(MutableByteSpan & verifierBuf, size_t & outVerifierLen) override;
CHIP_ERROR GetSetupPasscode(uint32_t & setupPasscode) override;
CHIP_ERROR SetSetupPasscode(uint32_t setupPasscode) override;
private:
GenericConfigurationManagerImpl<ConfigClass> & mGenericConfigManager;
};
template <class ConfigClass>
CHIP_ERROR LegacyTemporaryCommissionableDataProvider<ConfigClass>::GetSetupPasscode(uint32_t & setupPasscode)
{
CHIP_ERROR err;
err = mGenericConfigManager.ReadConfigValue(ConfigClass::kConfigKey_SetupPinCode, setupPasscode);
#if defined(CHIP_DEVICE_CONFIG_USE_TEST_SETUP_PIN_CODE) && CHIP_DEVICE_CONFIG_USE_TEST_SETUP_PIN_CODE
if (err == CHIP_DEVICE_ERROR_CONFIG_NOT_FOUND)
{
setupPasscode = CHIP_DEVICE_CONFIG_USE_TEST_SETUP_PIN_CODE;
err = CHIP_NO_ERROR;
}
#endif // defined(CHIP_DEVICE_CONFIG_USE_TEST_SETUP_PIN_CODE) && CHIP_DEVICE_CONFIG_USE_TEST_SETUP_PIN_CODE
SuccessOrExit(err);
exit:
return err;
}
template <class ConfigClass>
CHIP_ERROR LegacyTemporaryCommissionableDataProvider<ConfigClass>::SetSetupPasscode(uint32_t setupPasscode)
{
return mGenericConfigManager.WriteConfigValue(ConfigClass::kConfigKey_SetupPinCode, setupPasscode);
}
template <class ConfigClass>
CHIP_ERROR LegacyTemporaryCommissionableDataProvider<ConfigClass>::GetSetupDiscriminator(uint16_t & setupDiscriminator)
{
CHIP_ERROR err;
uint32_t val;
err = mGenericConfigManager.ReadConfigValue(ConfigClass::kConfigKey_SetupDiscriminator, val);
#if defined(CHIP_DEVICE_CONFIG_USE_TEST_SETUP_DISCRIMINATOR) && CHIP_DEVICE_CONFIG_USE_TEST_SETUP_DISCRIMINATOR
if (err == CHIP_DEVICE_ERROR_CONFIG_NOT_FOUND)
{
val = CHIP_DEVICE_CONFIG_USE_TEST_SETUP_DISCRIMINATOR;
err = CHIP_NO_ERROR;
}
#endif // defined(CHIP_DEVICE_CONFIG_USE_TEST_SETUP_DISCRIMINATOR) && CHIP_DEVICE_CONFIG_USE_TEST_SETUP_DISCRIMINATOR
SuccessOrExit(err);
setupDiscriminator = static_cast<uint16_t>(val);
exit:
return err;
}
template <class ConfigClass>
CHIP_ERROR LegacyTemporaryCommissionableDataProvider<ConfigClass>::SetSetupDiscriminator(uint16_t setupDiscriminator)
{
return mGenericConfigManager.WriteConfigValue(ConfigClass::kConfigKey_SetupDiscriminator,
static_cast<uint32_t>(setupDiscriminator));
}
template <class ConfigClass>
CHIP_ERROR LegacyTemporaryCommissionableDataProvider<ConfigClass>::GetSpake2pIterationCount(uint32_t & iterationCount)
{
CHIP_ERROR err = mGenericConfigManager.ReadConfigValue(ConfigClass::kConfigKey_Spake2pIterationCount, iterationCount);
#if defined(CHIP_DEVICE_CONFIG_USE_TEST_SPAKE2P_ITERATION_COUNT) && CHIP_DEVICE_CONFIG_USE_TEST_SPAKE2P_ITERATION_COUNT
if (err == CHIP_DEVICE_ERROR_CONFIG_NOT_FOUND)
{
iterationCount = CHIP_DEVICE_CONFIG_USE_TEST_SPAKE2P_ITERATION_COUNT;
err = CHIP_NO_ERROR;
}
#endif // defined(CHIP_DEVICE_CONFIG_USE_TEST_SPAKE2P_ITERATION_COUNT) && CHIP_DEVICE_CONFIG_USE_TEST_SPAKE2P_ITERATION_COUNT
SuccessOrExit(err);
exit:
return err;
}
template <class ConfigClass>
CHIP_ERROR LegacyTemporaryCommissionableDataProvider<ConfigClass>::GetSpake2pSalt(MutableByteSpan & saltBuf)
{
static constexpr size_t kSpake2pSalt_MaxBase64Len = BASE64_ENCODED_LEN(chip::Crypto::kSpake2p_Max_PBKDF_Salt_Length) + 1;
CHIP_ERROR err = CHIP_NO_ERROR;
char saltB64[kSpake2pSalt_MaxBase64Len] = { 0 };
size_t saltB64Len = 0;
err = mGenericConfigManager.ReadConfigValueStr(ConfigClass::kConfigKey_Spake2pSalt, saltB64, sizeof(saltB64), saltB64Len);
#if defined(CHIP_DEVICE_CONFIG_USE_TEST_SPAKE2P_SALT)
if (err == CHIP_DEVICE_ERROR_CONFIG_NOT_FOUND)
{
saltB64Len = strlen(CHIP_DEVICE_CONFIG_USE_TEST_SPAKE2P_SALT);
VerifyOrReturnError(saltB64Len <= sizeof(saltB64), CHIP_ERROR_BUFFER_TOO_SMALL);
memcpy(saltB64, CHIP_DEVICE_CONFIG_USE_TEST_SPAKE2P_SALT, saltB64Len);
err = CHIP_NO_ERROR;
}
#endif // defined(CHIP_DEVICE_CONFIG_USE_TEST_SPAKE2P_SALT)
ReturnErrorOnFailure(err);
VerifyOrReturnError(chip::CanCastTo<uint32_t>(saltB64Len), CHIP_ERROR_INTERNAL);
size_t saltLen = chip::Base64Decode32(saltB64, static_cast<uint32_t>(saltB64Len), reinterpret_cast<uint8_t *>(saltB64));
VerifyOrReturnError(saltLen <= saltBuf.size(), CHIP_ERROR_BUFFER_TOO_SMALL);
memcpy(saltBuf.data(), saltB64, saltLen);
saltBuf.reduce_size(saltLen);
return CHIP_NO_ERROR;
}
template <class ConfigClass>
CHIP_ERROR LegacyTemporaryCommissionableDataProvider<ConfigClass>::GetSpake2pVerifier(MutableByteSpan & verifierBuf,
size_t & verifierLen)
{
static constexpr size_t kSpake2pSerializedVerifier_MaxBase64Len =
BASE64_ENCODED_LEN(chip::Crypto::kSpake2p_VerifierSerialized_Length) + 1;
CHIP_ERROR err = CHIP_NO_ERROR;
char verifierB64[kSpake2pSerializedVerifier_MaxBase64Len] = { 0 };
size_t verifierB64Len = 0;
err = mGenericConfigManager.ReadConfigValueStr(ConfigClass::kConfigKey_Spake2pVerifier, verifierB64, sizeof(verifierB64),
verifierB64Len);
#if defined(CHIP_DEVICE_CONFIG_USE_TEST_SPAKE2P_VERIFIER)
if (err == CHIP_DEVICE_ERROR_CONFIG_NOT_FOUND)
{
verifierB64Len = strlen(CHIP_DEVICE_CONFIG_USE_TEST_SPAKE2P_VERIFIER);
VerifyOrReturnError(verifierB64Len <= sizeof(verifierB64), CHIP_ERROR_BUFFER_TOO_SMALL);
memcpy(verifierB64, CHIP_DEVICE_CONFIG_USE_TEST_SPAKE2P_VERIFIER, verifierB64Len);
err = CHIP_NO_ERROR;
}
#endif // defined(CHIP_DEVICE_CONFIG_USE_TEST_SPAKE2P_VERIFIER)
ReturnErrorOnFailure(err);
VerifyOrReturnError(chip::CanCastTo<uint32_t>(verifierB64Len), CHIP_ERROR_INTERNAL);
verifierLen =
chip::Base64Decode32(verifierB64, static_cast<uint32_t>(verifierB64Len), reinterpret_cast<uint8_t *>(verifierB64));
VerifyOrReturnError(verifierLen <= verifierBuf.size(), CHIP_ERROR_BUFFER_TOO_SMALL);
memcpy(verifierBuf.data(), verifierB64, verifierLen);
verifierBuf.reduce_size(verifierLen);
return err;
}
#endif // CHIP_USE_TRANSITIONAL_COMMISSIONABLE_DATA_PROVIDER
template <class ConfigClass>
CHIP_ERROR GenericConfigurationManagerImpl<ConfigClass>::Init()
{
CHIP_ERROR err = CHIP_NO_ERROR;
#if CHIP_ENABLE_ROTATING_DEVICE_ID && defined(CHIP_DEVICE_CONFIG_ROTATING_DEVICE_ID_UNIQUE_ID)
mLifetimePersistedCounter.Init(CHIP_CONFIG_LIFETIIME_PERSISTED_COUNTER_KEY);
#endif
#if CHIP_USE_TRANSITIONAL_DEVICE_INSTANCE_INFO_PROVIDER
static GenericDeviceInstanceInfoProvider<ConfigClass> sGenericDeviceInstanceInfoProvider(*this);
SetDeviceInstanceInfoProvider(&sGenericDeviceInstanceInfoProvider);
#endif
#if CHIP_USE_TRANSITIONAL_COMMISSIONABLE_DATA_PROVIDER
// Using a temporary singleton here because the overall GenericConfigurationManagerImpl is
// a singleton. This is TEMPORARY code to set the table for clients to set their own
// implementation properly, without loss of functionality for legacy in the meantime.
static LegacyTemporaryCommissionableDataProvider<ConfigClass> sLegacyTemporaryCommissionableDataProvider(*this);
SetCommissionableDataProvider(&sLegacyTemporaryCommissionableDataProvider);
#endif
char uniqueId[kMaxUniqueIDLength + 1];
// Generate Unique ID only if it is not present in the storage.
if (GetUniqueId(uniqueId, sizeof(uniqueId)) != CHIP_NO_ERROR)
{
ReturnErrorOnFailure(GenerateUniqueId(uniqueId, sizeof(uniqueId)));
ReturnErrorOnFailure(StoreUniqueId(uniqueId, strlen(uniqueId)));
}
return err;
}
template <class ConfigClass>
CHIP_ERROR GenericConfigurationManagerImpl<ConfigClass>::GetSoftwareVersion(uint32_t & softwareVer)
{
softwareVer = static_cast<uint32_t>(CHIP_DEVICE_CONFIG_DEVICE_SOFTWARE_VERSION);
return CHIP_NO_ERROR;
}
template <class ConfigClass>
inline CHIP_ERROR GenericConfigurationManagerImpl<ConfigClass>::StoreSoftwareVersion(uint32_t softwareVer)
{
return CHIP_ERROR_UNSUPPORTED_CHIP_FEATURE;
}
template <class ConfigClass>
CHIP_ERROR GenericConfigurationManagerImpl<ConfigClass>::GetFirmwareBuildChipEpochTime(System::Clock::Seconds32 & chipEpochTime)
{
// If the setter was called and we have a value in memory, return this.
if (sFirmwareBuildChipEpochTime.HasValue())
{
chipEpochTime = sFirmwareBuildChipEpochTime.Value();
return CHIP_NO_ERROR;
}
#ifdef CHIP_DEVICE_CONFIG_FIRMWARE_BUILD_TIME_MATTER_EPOCH_S
{
chipEpochTime = chip::System::Clock::Seconds32(CHIP_DEVICE_CONFIG_FIRMWARE_BUILD_TIME_MATTER_EPOCH_S);
return CHIP_NO_ERROR;
}
#endif
// Else, attempt to read the hard-coded values.
VerifyOrReturnError(!BUILD_DATE_IS_BAD(CHIP_DEVICE_CONFIG_FIRMWARE_BUILD_DATE), CHIP_ERROR_INTERNAL);
VerifyOrReturnError(!BUILD_TIME_IS_BAD(CHIP_DEVICE_CONFIG_FIRMWARE_BUILD_TIME), CHIP_ERROR_INTERNAL);
const char * date = CHIP_DEVICE_CONFIG_FIRMWARE_BUILD_DATE;
const char * time = CHIP_DEVICE_CONFIG_FIRMWARE_BUILD_TIME;
uint32_t seconds;
auto good = CalendarToChipEpochTime(COMPUTE_BUILD_YEAR(date), COMPUTE_BUILD_MONTH(date), COMPUTE_BUILD_DAY(date),
COMPUTE_BUILD_HOUR(time), COMPUTE_BUILD_MIN(time), COMPUTE_BUILD_SEC(time), seconds);
if (good)
{
chipEpochTime = chip::System::Clock::Seconds32(seconds);
}
return good ? CHIP_NO_ERROR : CHIP_ERROR_INVALID_ARGUMENT;
}
template <class ConfigClass>
CHIP_ERROR GenericConfigurationManagerImpl<ConfigClass>::SetFirmwareBuildChipEpochTime(System::Clock::Seconds32 chipEpochTime)
{
// The setter is sticky in that once the hard-coded time is overriden, it
// will be for the lifetime of the configuration manager singleton.
// However, this is not persistent across boots.
//
// Implementations that can't use the hard-coded time for whatever reason
// should set this at each init.
sFirmwareBuildChipEpochTime.SetValue(chipEpochTime);
return CHIP_NO_ERROR;
}
template <class ConfigClass>
CHIP_ERROR GenericConfigurationManagerImpl<ConfigClass>::GetDeviceTypeId(uint32_t & deviceType)
{
deviceType = static_cast<uint32_t>(CHIP_DEVICE_CONFIG_DEVICE_TYPE);
return CHIP_NO_ERROR;
}
template <class ConfigClass>
CHIP_ERROR GenericConfigurationManagerImpl<ConfigClass>::GetInitialPairingHint(uint16_t & pairingHint)
{
pairingHint = static_cast<uint16_t>(CHIP_DEVICE_CONFIG_PAIRING_INITIAL_HINT);
return CHIP_NO_ERROR;
}
template <class ConfigClass>
CHIP_ERROR GenericConfigurationManagerImpl<ConfigClass>::GetSecondaryPairingHint(uint16_t & pairingHint)
{
pairingHint = static_cast<uint16_t>(CHIP_DEVICE_CONFIG_PAIRING_SECONDARY_HINT);
return CHIP_NO_ERROR;
}
template <class ConfigClass>
CHIP_ERROR GenericConfigurationManagerImpl<ConfigClass>::GetSoftwareVersionString(char * buf, size_t bufSize)
{
VerifyOrReturnError(bufSize >= sizeof(CHIP_DEVICE_CONFIG_DEVICE_SOFTWARE_VERSION_STRING), CHIP_ERROR_BUFFER_TOO_SMALL);
strcpy(buf, CHIP_DEVICE_CONFIG_DEVICE_SOFTWARE_VERSION_STRING);
return CHIP_NO_ERROR;
}
template <class ConfigClass>
CHIP_ERROR GenericConfigurationManagerImpl<ConfigClass>::StoreSerialNumber(const char * serialNum, size_t serialNumLen)
{
return WriteConfigValueStr(ConfigClass::kConfigKey_SerialNum, serialNum, serialNumLen);
}
template <class ConfigClass>
CHIP_ERROR GenericConfigurationManagerImpl<ConfigClass>::GetPrimaryWiFiMACAddress(uint8_t * buf)
{
return CHIP_DEVICE_ERROR_CONFIG_NOT_FOUND;
}
template <class ConfigClass>
CHIP_ERROR GenericConfigurationManagerImpl<ConfigClass>::GetPrimaryMACAddress(MutableByteSpan & buf)
{
if (buf.size() != ConfigurationManager::kPrimaryMACAddressLength)
return CHIP_ERROR_INVALID_ARGUMENT;
memset(buf.data(), 0, buf.size()); // zero the whole buffer, in case the caller ignores buf.size()
#if CHIP_DEVICE_CONFIG_ENABLE_THREAD
if (chip::DeviceLayer::ThreadStackMgr().GetPrimary802154MACAddress(buf.data()) == CHIP_NO_ERROR)
{
ChipLogDetail(DeviceLayer, "Using Thread extended MAC for hostname.");
buf.reduce_size(kThreadMACAddressLength);
return CHIP_NO_ERROR;
}
#endif
if (chip::DeviceLayer::ConfigurationMgr().GetPrimaryWiFiMACAddress(buf.data()) == CHIP_NO_ERROR)
{
ChipLogDetail(DeviceLayer, "Using WiFi MAC for hostname");
buf.reduce_size(kEthernetMACAddressLength);
return CHIP_NO_ERROR;
}
return CHIP_ERROR_NOT_FOUND;
}
template <class ConfigClass>
CHIP_ERROR GenericConfigurationManagerImpl<ConfigClass>::GetPrimary802154MACAddress(uint8_t * buf)
{
#if CHIP_DEVICE_CONFIG_ENABLE_THREAD
return ThreadStackMgr().GetPrimary802154MACAddress(buf);
#else
return CHIP_DEVICE_ERROR_CONFIG_NOT_FOUND;
#endif // CHIP_DEVICE_CONFIG_ENABLE_THREAD
}
template <class ConfigClass>
inline CHIP_ERROR GenericConfigurationManagerImpl<ConfigClass>::StoreHardwareVersion(uint16_t hardwareVer)
{
return WriteConfigValue(ConfigClass::kConfigKey_HardwareVersion, static_cast<uint32_t>(hardwareVer));
}
template <class ConfigClass>
CHIP_ERROR GenericConfigurationManagerImpl<ConfigClass>::StoreManufacturingDate(const char * mfgDate, size_t mfgDateLen)
{
return WriteConfigValueStr(ConfigClass::kConfigKey_ManufacturingDate, mfgDate, mfgDateLen);
}
template <class ConfigClass>
void GenericConfigurationManagerImpl<ConfigClass>::InitiateFactoryReset()
{}
template <class ImplClass>
void GenericConfigurationManagerImpl<ImplClass>::NotifyOfAdvertisementStart()
{
#if CHIP_ENABLE_ROTATING_DEVICE_ID && defined(CHIP_DEVICE_CONFIG_ROTATING_DEVICE_ID_UNIQUE_ID)
// Increment life time counter to protect against long-term tracking of rotating device ID.
IncrementLifetimeCounter();
// Inheriting classes should call this method so the lifetime counter is updated if necessary.
#endif
}
template <class ConfigClass>
CHIP_ERROR GenericConfigurationManagerImpl<ConfigClass>::GetRegulatoryLocation(uint8_t & location)
{
uint32_t value;
if (CHIP_NO_ERROR != ReadConfigValue(ConfigClass::kConfigKey_RegulatoryLocation, value))
{
ReturnErrorOnFailure(GetLocationCapability(location));
if (CHIP_NO_ERROR != StoreRegulatoryLocation(location))
{
ChipLogError(DeviceLayer, "Failed to store RegulatoryLocation");
}
}
else
{
location = static_cast<uint8_t>(value);
}
return CHIP_NO_ERROR;
}
template <class ConfigClass>
CHIP_ERROR GenericConfigurationManagerImpl<ConfigClass>::StoreRegulatoryLocation(uint8_t location)
{
uint32_t value = location;
return WriteConfigValue(ConfigClass::kConfigKey_RegulatoryLocation, value);
}
template <class ConfigClass>
CHIP_ERROR GenericConfigurationManagerImpl<ConfigClass>::GetCountryCode(char * buf, size_t bufSize, size_t & codeLen)
{
return ReadConfigValueStr(ConfigClass::kConfigKey_CountryCode, buf, bufSize, codeLen);
}
template <class ConfigClass>
CHIP_ERROR GenericConfigurationManagerImpl<ConfigClass>::StoreCountryCode(const char * code, size_t codeLen)
{
return WriteConfigValueStr(ConfigClass::kConfigKey_CountryCode, code, codeLen);
}
template <class ImplClass>
CHIP_ERROR GenericConfigurationManagerImpl<ImplClass>::GetRebootCount(uint32_t & rebootCount)
{
return CHIP_ERROR_UNSUPPORTED_CHIP_FEATURE;
}
template <class ImplClass>
CHIP_ERROR GenericConfigurationManagerImpl<ImplClass>::StoreRebootCount(uint32_t rebootCount)
{
return CHIP_ERROR_UNSUPPORTED_CHIP_FEATURE;
}
template <class ImplClass>
CHIP_ERROR GenericConfigurationManagerImpl<ImplClass>::GetTotalOperationalHours(uint32_t & totalOperationalHours)
{
return CHIP_ERROR_UNSUPPORTED_CHIP_FEATURE;
}
template <class ImplClass>
CHIP_ERROR GenericConfigurationManagerImpl<ImplClass>::StoreTotalOperationalHours(uint32_t totalOperationalHours)
{
return CHIP_ERROR_UNSUPPORTED_CHIP_FEATURE;
}
template <class ImplClass>
CHIP_ERROR GenericConfigurationManagerImpl<ImplClass>::GetBootReason(uint32_t & bootReason)
{
return CHIP_ERROR_UNSUPPORTED_CHIP_FEATURE;
}
template <class ImplClass>
CHIP_ERROR GenericConfigurationManagerImpl<ImplClass>::StoreBootReason(uint32_t bootReason)
{
return CHIP_ERROR_UNSUPPORTED_CHIP_FEATURE;
}
template <class ConfigClass>
CHIP_ERROR GenericConfigurationManagerImpl<ConfigClass>::GetUniqueId(char * buf, size_t bufSize)
{
CHIP_ERROR err;
size_t uniqueIdLen = 0; // without counting null-terminator
err = ReadConfigValueStr(ConfigClass::kConfigKey_UniqueId, buf, bufSize, uniqueIdLen);
ReturnErrorOnFailure(err);
VerifyOrReturnError(uniqueIdLen < bufSize, CHIP_ERROR_BUFFER_TOO_SMALL);
VerifyOrReturnError(buf[uniqueIdLen] == 0, CHIP_ERROR_INVALID_STRING_LENGTH);
return err;
}
template <class ConfigClass>
CHIP_ERROR GenericConfigurationManagerImpl<ConfigClass>::StoreUniqueId(const char * uniqueId, size_t uniqueIdLen)
{
return WriteConfigValueStr(ConfigClass::kConfigKey_UniqueId, uniqueId, uniqueIdLen);
}
template <class ConfigClass>
CHIP_ERROR GenericConfigurationManagerImpl<ConfigClass>::GenerateUniqueId(char * buf, size_t bufSize)
{
uint64_t randomUniqueId = Crypto::GetRandU64();
return Encoding::BytesToUppercaseHexString(reinterpret_cast<uint8_t *>(&randomUniqueId), sizeof(uint64_t), buf, bufSize);
}
#if CHIP_ENABLE_ROTATING_DEVICE_ID && defined(CHIP_DEVICE_CONFIG_ROTATING_DEVICE_ID_UNIQUE_ID)
template <class ConfigClass>
CHIP_ERROR GenericConfigurationManagerImpl<ConfigClass>::GetLifetimeCounter(uint16_t & lifetimeCounter)
{
lifetimeCounter = static_cast<uint16_t>(mLifetimePersistedCounter.GetValue());
return CHIP_NO_ERROR;
}
template <class ConfigClass>
CHIP_ERROR GenericConfigurationManagerImpl<ConfigClass>::IncrementLifetimeCounter()
{
return mLifetimePersistedCounter.Advance();
}
template <class ConfigClass>
CHIP_ERROR GenericConfigurationManagerImpl<ConfigClass>::SetRotatingDeviceIdUniqueId(const ByteSpan & uniqueIdSpan)
{
VerifyOrReturnError(uniqueIdSpan.size() >= kMinRotatingDeviceIDUniqueIDLength, CHIP_ERROR_INVALID_ARGUMENT);
VerifyOrReturnError(uniqueIdSpan.size() <= CHIP_DEVICE_CONFIG_ROTATING_DEVICE_ID_UNIQUE_ID_LENGTH, CHIP_ERROR_BUFFER_TOO_SMALL);
memcpy(mRotatingDeviceIdUniqueId, uniqueIdSpan.data(), uniqueIdSpan.size());
mRotatingDeviceIdUniqueIdLength = uniqueIdSpan.size();
return CHIP_NO_ERROR;
}
template <class ConfigClass>
CHIP_ERROR GenericConfigurationManagerImpl<ConfigClass>::GetRotatingDeviceIdUniqueId(MutableByteSpan & uniqueIdSpan)
{
VerifyOrReturnError(mRotatingDeviceIdUniqueIdLength <= uniqueIdSpan.size(), CHIP_ERROR_BUFFER_TOO_SMALL);
memcpy(uniqueIdSpan.data(), mRotatingDeviceIdUniqueId, mRotatingDeviceIdUniqueIdLength);
uniqueIdSpan.reduce_size(mRotatingDeviceIdUniqueIdLength);
return CHIP_NO_ERROR;
}
#endif // CHIP_ENABLE_ROTATING_DEVICE_ID
template <class ConfigClass>
CHIP_ERROR GenericConfigurationManagerImpl<ConfigClass>::GetFailSafeArmed(bool & val)
{
return ReadConfigValue(ConfigClass::kConfigKey_FailSafeArmed, val);
}
template <class ConfigClass>
CHIP_ERROR GenericConfigurationManagerImpl<ConfigClass>::SetFailSafeArmed(bool val)
{
return WriteConfigValue(ConfigClass::kConfigKey_FailSafeArmed, val);
}
template <class ConfigClass>
CHIP_ERROR
GenericConfigurationManagerImpl<ConfigClass>::GetBLEDeviceIdentificationInfo(Ble::ChipBLEDeviceIdentificationInfo & deviceIdInfo)
{
CHIP_ERROR err;
uint16_t id;
uint16_t discriminator;
deviceIdInfo.Init();
err = GetDeviceInstanceInfoProvider()->GetVendorId(id);
SuccessOrExit(err);
deviceIdInfo.SetVendorId(id);
err = GetDeviceInstanceInfoProvider()->GetProductId(id);
SuccessOrExit(err);
deviceIdInfo.SetProductId(id);
err = GetCommissionableDataProvider()->GetSetupDiscriminator(discriminator);
SuccessOrExit(err);
deviceIdInfo.SetDeviceDiscriminator(discriminator);
deviceIdInfo.SetAdvertisementVersion(BLE_ADVERTISEMENT_VERSION);
#if CHIP_ENABLE_ADDITIONAL_DATA_ADVERTISING
deviceIdInfo.SetAdditionalDataFlag(true);
#endif
exit:
return err;
}
template <class ConfigClass>
bool GenericConfigurationManagerImpl<ConfigClass>::IsFullyProvisioned()
{
return
#if CHIP_DEVICE_CONFIG_ENABLE_WIFI_STATION
ConnectivityMgr().IsWiFiStationProvisioned() &&
#endif
#if CHIP_DEVICE_CONFIG_ENABLE_THREAD
ConnectivityMgr().IsThreadProvisioned() &&
#endif
true;
}
template <class ConfigClass>
bool GenericConfigurationManagerImpl<ConfigClass>::IsCommissionableDeviceTypeEnabled()
{
#if CHIP_DEVICE_CONFIG_ENABLE_COMMISSIONABLE_DEVICE_TYPE
return true;
#else
return false;
#endif
}
template <class ConfigClass>
bool GenericConfigurationManagerImpl<ConfigClass>::IsCommissionableDeviceNameEnabled()
{
return CHIP_DEVICE_CONFIG_ENABLE_COMMISSIONABLE_DEVICE_NAME == 1;
}
template <class ConfigClass>
CHIP_ERROR GenericConfigurationManagerImpl<ConfigClass>::GetCommissionableDeviceName(char * buf, size_t bufSize)
{
VerifyOrReturnError(bufSize >= sizeof(CHIP_DEVICE_CONFIG_DEVICE_NAME), CHIP_ERROR_BUFFER_TOO_SMALL);
strcpy(buf, CHIP_DEVICE_CONFIG_DEVICE_NAME);
return CHIP_NO_ERROR;
}
template <class ConfigClass>
CHIP_ERROR GenericConfigurationManagerImpl<ConfigClass>::GetInitialPairingInstruction(char * buf, size_t bufSize)
{
VerifyOrReturnError(bufSize >= sizeof(CHIP_DEVICE_CONFIG_PAIRING_INITIAL_INSTRUCTION), CHIP_ERROR_BUFFER_TOO_SMALL);
strcpy(buf, CHIP_DEVICE_CONFIG_PAIRING_INITIAL_INSTRUCTION);
return CHIP_NO_ERROR;
}
template <class ConfigClass>
CHIP_ERROR GenericConfigurationManagerImpl<ConfigClass>::GetSecondaryPairingInstruction(char * buf, size_t bufSize)
{
VerifyOrReturnError(bufSize >= sizeof(CHIP_DEVICE_CONFIG_PAIRING_SECONDARY_INSTRUCTION), CHIP_ERROR_BUFFER_TOO_SMALL);
strcpy(buf, CHIP_DEVICE_CONFIG_PAIRING_SECONDARY_INSTRUCTION);
return CHIP_NO_ERROR;
}
#if CHIP_CONFIG_TEST
template <class ConfigClass>
void GenericConfigurationManagerImpl<ConfigClass>::RunUnitTests()
{
ChipLogProgress(DeviceLayer, "Running configuration unit test");
RunConfigUnitTest();
}
#endif
template <class ConfigClass>
void GenericConfigurationManagerImpl<ConfigClass>::LogDeviceConfig()
{
CHIP_ERROR err;
ChipLogProgress(DeviceLayer, "Device Configuration:");
DeviceInstanceInfoProvider * deviceInstanceInfoProvider = GetDeviceInstanceInfoProvider();
{
char serialNum[ConfigurationManager::kMaxSerialNumberLength + 1];
err = deviceInstanceInfoProvider->GetSerialNumber(serialNum, sizeof(serialNum));
ChipLogProgress(DeviceLayer, " Serial Number: %s", (err == CHIP_NO_ERROR) ? serialNum : "(not set)");
}
{
uint16_t vendorId;
if (deviceInstanceInfoProvider->GetVendorId(vendorId) != CHIP_NO_ERROR)
{
vendorId = 0;
}
ChipLogProgress(DeviceLayer, " Vendor Id: %u (0x%X)", vendorId, vendorId);
}
{
uint16_t productId;
if (deviceInstanceInfoProvider->GetProductId(productId) != CHIP_NO_ERROR)
{
productId = 0;
}
ChipLogProgress(DeviceLayer, " Product Id: %u (0x%X)", productId, productId);
}
{
char productName[ConfigurationManager::kMaxProductNameLength + 1];
err = deviceInstanceInfoProvider->GetProductName(productName, sizeof(productName));
if (CHIP_NO_ERROR == err)
{
ChipLogProgress(DeviceLayer, " Product Name: %s", productName);
}
else
{
ChipLogError(DeviceLayer, " Product Name: n/a (%" CHIP_ERROR_FORMAT ")", err.Format());
}
}
{
uint16_t hardwareVer;
if (deviceInstanceInfoProvider->GetHardwareVersion(hardwareVer) != CHIP_NO_ERROR)
{
hardwareVer = 0;
}
ChipLogProgress(DeviceLayer, " Hardware Version: %u", hardwareVer);
}
CommissionableDataProvider * cdp = GetCommissionableDataProvider();
{
uint32_t setupPasscode;
if ((cdp == nullptr) || (cdp->GetSetupPasscode(setupPasscode) != CHIP_NO_ERROR))
{
setupPasscode = 0;
}
ChipLogProgress(DeviceLayer, " Setup Pin Code (0 for UNKNOWN/ERROR): %" PRIu32 "", setupPasscode);
}
{
uint16_t setupDiscriminator;
if ((cdp == nullptr) || (cdp->GetSetupDiscriminator(setupDiscriminator) != CHIP_NO_ERROR))
{
setupDiscriminator = 0xFFFF;
}
ChipLogProgress(DeviceLayer, " Setup Discriminator (0xFFFF for UNKNOWN/ERROR): %u (0x%X)", setupDiscriminator,
setupDiscriminator);
}
{
uint16_t year;
uint8_t month, dayOfMonth;
err = deviceInstanceInfoProvider->GetManufacturingDate(year, month, dayOfMonth);
if (err == CHIP_NO_ERROR)
{
ChipLogProgress(DeviceLayer, " Manufacturing Date: %04u-%02u-%02u", year, month, dayOfMonth);
}
else
{
ChipLogProgress(DeviceLayer, " Manufacturing Date: (not set)");
}
}
{
uint32_t deviceType;
if (GetDeviceTypeId(deviceType) != CHIP_NO_ERROR)
{
deviceType = 0;
}
ChipLogProgress(DeviceLayer, " Device Type: %" PRIu32 " (0x%" PRIX32 ")", deviceType, deviceType);
}
}
} // namespace Internal
} // namespace DeviceLayer
} // namespace chip
#endif // GENERIC_CONFIGURATION_MANAGER_IMPL_CPP