-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathfwdbwd.yaml
100 lines (99 loc) · 2.37 KB
/
fwdbwd.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
inputs:
_include:
- (.)gridding.yml
- (.)pdopts.yml
- (.)pmopts.yml
- (.)cgopts.yml
- (.)dist.yml
- (.)out.yml
model-name:
dtype: str
abbreviation: mname
default: MODEL
info: Name of model in mds
mask:
dtype: str
abbreviation: mask
info: Either path to mask.fits or set to mds to use the mask contained in the
mds.
nband:
dtype: int
required: true
abbreviation: nb
info: Number of imaging bands
postfix:
dtype: str
default: main
info: Can be used to specify a custom name for the image space data products
sigmainv:
dtype: float
default: 1e-5
abbreviation: sinv
info: Standard deviation of assumed GRF prior
bases:
dtype: str
default: self,db1,db2
abbreviation: bases
info: Wavelet bases to use. Give as comma separated str eg. 'self,db1,db2'
nlevels:
dtype: int
default: 3
abbreviation: nlevels
info: Wavelet decomposition level
sigma21:
dtype: float
abbreviation: sig21
info: Wavelet thresholding level
l1reweight-from:
dtype: int
default: 5
info: Start doing l1reweights after this many iterations
rmsfactor:
dtype: float
default: 3.0
info: By default will threshold by rmsfactor*rms at every iteration
gamma:
dtype: float
default: 0.5
info: Step size of update
positivity:
dtype: int
default: 1
# choices:
# - 0
# - 1
# - 2
info: How to apply positivity constraint 0 -> no positivity, 1 -> normal positivity
constraint 2 -> strong positivity i.e. all pixels in a band > 0
niter:
dtype: int
default: 5
info: Number of iterations. L21 reweighting will take place after every iteration
abbreviation: niter
tol:
dtype: float
default: 1e-5
info: Tolerance at which to terminate algorithm. Will stop when norm(x-xp)/norm(x)
< tol
fits-mfs:
dtype: bool
default: true
info: Output MFS fits files
fits-cubes:
dtype: bool
default: false
info: Output fits cubes
memory-greedy:
dtype: bool
default: false
info: Holds data in memory if set
parametrisation:
dtype: str
default: id
info: The kind of parametrisation to apply
restart:
dtype: bool
default: false
info: Restart the deconvolution by initialising the model to zero and the residual
to the dirty image
outputs: {}