-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtranscribe.py
279 lines (216 loc) · 10.5 KB
/
transcribe.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
import whisper
import torch
import os
import sys
import warnings
import numpy as np
import math
from pydub import AudioSegment
from preprocess import preprocess_audio
# Suppress FutureWarning associated with torch.load
warnings.filterwarnings("ignore", category=FutureWarning)
def strip_quotes(path):
"""
Remove leading and trailing quotes from a string.
"""
return path.strip('"\'')
def load_model():
"""
Prompt the user to select a Whisper model and specify GPU if available.
"""
#NOTE: Change to command line args.... rather than options for the user to select....
#NOTE: Select large model to potential improve transcription output!
models = ["tiny", "base", "small", "medium", "large"]
print("Available Whisper models:")
for i, model_name in enumerate(models, 1):
print(f"{i}. {model_name}")
while True:
try:
choice = int(input("Select a model (1-5): "))
if 1 <= choice <= 5:
model_name = models[choice - 1]
break
else:
print("Invalid choice. Please select a number between 1 and 5.")
except ValueError:
print("Invalid input. Please enter a number.")
# Check if GPU (CUDA) is available, otherwise use CPU
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Loading model on {device}...")
# Load the model onto the specified device (GPU or CPU)
model = whisper.load_model(model_name, device=device)
return model
#NOTE: You can modify overlap here to provide context to ensure transcription avoids repeat of words.
def process_audio_chunks(file_path, model, chunk_size=30, overlap=4):
"""
Process audio file by chunks and return the transcription with improved overlap handling.
Adds overlap between chunks to provide better transcription context.
"""
try:
# Load and preprocess the audio file
print(f"Attempting to load audio file: {file_path}")
audio_segment = preprocess_audio(file_path) # Use preprocessed audio
sample_rate = audio_segment.frame_rate
audio_np = np.array(audio_segment.get_array_of_samples(), dtype=np.float32)
audio_np = audio_np / np.max(np.abs(audio_np)) # Normalize to [-1, 1]
# Compute the number of chunks
target_sample_rate = 16000
num_chunks = math.ceil(len(audio_np) / (chunk_size * target_sample_rate))
print(f"Number of chunks: {num_chunks}")
transcript = []
for i in range(num_chunks):
# Calculate start and end indices with overlap
start = int(i * chunk_size * target_sample_rate) - int(overlap * target_sample_rate)
start = max(0, start) # Ensure start is not negative
end = int((i + 1) * chunk_size * target_sample_rate)
# Extract audio chunk with overlap
audio_chunk = audio_np[start:end]
# Ensure the chunk is not empty
if len(audio_chunk) == 0:
continue
print(f"Transcribing chunk {i+1}/{num_chunks}...")
# Transcribe each audio chunk
chunk_transcript = transcribe_audio_chunk(audio_chunk, model)
if chunk_transcript:
print(f"Chunk {i+1} transcription: {chunk_transcript}")
transcript.append(chunk_transcript)
return ' '.join(transcript)
except Exception as e:
print(f"Error processing audio chunks: {e}")
return None
#Transcribes a single audio chunk
def transcribe_audio_chunk(audio_chunk, model):
try:
if isinstance(audio_chunk, np.ndarray):
audio_chunk = torch.tensor(audio_chunk, dtype=torch.float32).unsqueeze(0)
audio_chunk = audio_chunk.squeeze().numpy()
print(f"Chunk duration: {len(audio_chunk) / 16000:.2f} seconds")
print(f"Chunk amplitude range: {np.min(audio_chunk):.4f} to {np.max(audio_chunk):.4f}")
result = model.transcribe(audio_chunk, language="en", temperature=0.0)
return result['text']
except Exception as e:
print(f"Error transcribing audio chunk: {e}")
return None
def process_audio_chunks(file_path, model, chunk_size=20, overlap=2):
"""
Process audio file by chunks and return the transcription.
Adds overlap between chunks to provide better transcription context.
"""
try:
# Load the audio file using pydub
print(f"Attempting to load audio file: {file_path}")
audio_segment = AudioSegment.from_file(file_path)
sample_rate = audio_segment.frame_rate
# Convert audio to numpy array and normalize
audio_np = np.array(audio_segment.get_array_of_samples(), dtype=np.float32)
audio_np = audio_np / np.max(np.abs(audio_np)) # Normalize to [-1, 1]
print(f"Audio normalized. Sample data range: {np.min(audio_np)} to {np.max(audio_np)}")
# Resample audio to 16kHz (16000 Hz)
target_sample_rate = 16000
if sample_rate != target_sample_rate:
print(f"Resampling audio from {sample_rate} Hz to {target_sample_rate} Hz")
audio_segment = audio_segment.set_frame_rate(target_sample_rate)
sample_rate = target_sample_rate
audio_np = np.array(audio_segment.get_array_of_samples(), dtype=np.float32)
audio_np = audio_np / np.max(np.abs(audio_np)) # Normalize again after resampling
# Convert numpy array to torch tensor and reshape
audio = torch.tensor(audio_np, dtype=torch.float32).unsqueeze(0)
print("Audio file loaded and converted to tensor successfully")
# Compute the number of chunks
num_chunks = math.ceil(len(audio[0]) / (chunk_size * sample_rate))
print(f"Number of chunks: {num_chunks}")
transcript = []
for i in range(num_chunks):
# Calculate start and end indices with overlap
start = int(i * chunk_size * sample_rate) - int(overlap * sample_rate)
start = max(0, start) # Ensure start is not negative
end = int((i + 1) * chunk_size * sample_rate)
audio_chunk = audio[:, start:end]
# Ensure the chunk is not empty
if audio_chunk.size(1) == 0:
continue
# Convert tensor to numpy array
audio_chunk = audio_chunk.squeeze().numpy()
print(f"Audio chunk {i+1}/{num_chunks} converted to numpy array. Data range: {np.min(audio_chunk)} to {np.max(audio_chunk)}")
# Transcribe each audio chunk
print(f"Transcribing chunk {i+1}/{num_chunks}...")
chunk_transcript = transcribe_audio_chunk(audio_chunk, model)
if chunk_transcript:
print(f"Chunk {i+1} transcription: {chunk_transcript}")
transcript.append(chunk_transcript)
return ' '.join(transcript)
except Exception as e:
print(f"Error processing audio chunks: {e}")
return None
# Sanity check to ensure that your file is accessible to be read!
def check_file_properties(file_path):
try:
print(f"Checking properties for file: {file_path}")
print(f"File exists: {os.path.exists(file_path)}")
print(f"File is readable: {os.access(file_path, os.R_OK)}")
print(f"File size: {os.path.getsize(file_path)} bytes")
except Exception as e:
print(f"Error checking file properties: {e}")
def is_file_accessible(file_path):
return os.path.exists(file_path) and os.access(file_path, os.R_OK)
def transcribe_single_file(input_file, output_dir, model): # Add 'model' parameter here
try:
check_file_properties(input_file)
print(f"Transcribing {input_file}...")
# Adjust chunk size and overlap as needed (chunk_size: 30s is ideal for Whisper, overlap: between 0.5 to 2 secs)
transcript = process_audio_chunks(input_file, model, chunk_size=20, overlap=2) # Pass 'model' here
if transcript is None:
print("Transcription failed.")
return
# Save the transcript to a .txt file
output_file = os.path.join(output_dir, f"{os.path.splitext(os.path.basename(input_file))[0]}.txt")
with open(output_file, 'w', encoding='utf-8') as f:
f.write(transcript)
print(f"Transcription saved to: {output_file}")
except Exception as e:
print(f"Error in transcribe_single_file: {e}")
print(f"File path: {os.path.abspath(input_file)}")
print(f"Current working directory: {os.getcwd()}")
print(f"Directory contents: {os.listdir(os.path.dirname(input_file))}")
def transcribe_all_files(input_dir, output_dir, model):
# Check if directory exists
if not os.path.isdir(input_dir):
print(f"Error: Directory not found: {input_dir}")
return
# Iterate through all files in the input directory
for file_name in os.listdir(input_dir):
file_path = os.path.join(input_dir, file_name)
if file_name.lower().endswith(('.mp3', '.wav')):
# Pass 'model' when calling transcribe_single_file
transcribe_single_file(file_path, output_dir, model) # Model is passed here
if __name__ == "__main__":
# Load the user-selected Whisper model
try:
model = load_model()
print(f"Whisper model loaded successfully: {model.device}")
except Exception as e:
print(f"Error loading Whisper model: {e}")
sys.exit(1)
# Prompt user for input type
input_type = input("Do you want to transcribe a single file (S) or multiple files (M)? ").lower()
if input_type == 's':
input_file = strip_quotes(input("Enter the path to the audio file: "))
output_dir = strip_quotes(input("Enter the directory to save the transcription: "))
input_dir = os.path.dirname(input_file)
print(f"Contents of {input_dir}:")
for file in os.listdir(input_dir):
print(f" {file}")
else:
input_dir = strip_quotes(input("Enter the directory containing audio files: "))
output_dir = strip_quotes(input("Enter the directory to save the transcriptions: "))
# Ensure output directory exists
try:
os.makedirs(output_dir, exist_ok=True)
except PermissionError:
print(f"Error: Permission denied when trying to create or access {output_dir}")
sys.exit(1)
# Transcribe files based on user choice
if input_type == 's':
transcribe_single_file(input_file, output_dir, model)
else:
transcribe_all_files(input_dir, output_dir, model)