-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain_expe_008.m
192 lines (134 loc) · 5.46 KB
/
main_expe_008.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
close all;clear all;clc;
%% Path for Matlab functions
addpath ('functions/');
global path;
path = '/media/philippe/Disk_12To/robibio';
global expe;
expe = 8;
global epoch;
epoch= 1;
global iter;
iter = 1;
global saveSteps;
global saveIters;
saveIters = false;
saveSteps = false;
%% Create output folders
fprintf('Deleting folder %s/expe-%d', path, expe);
system (sprintf('rm -rf %s/expe-%d', path, expe));
fprintf(' [Done]\n');
mkdir(sprintf('%s/expe-%d',path ,expe ));
%% Global variables (to keep best optimization)
global bestWeight;
global bestEpoch;
global bestIter;
global gConfigHandler;
%id = 1;
%% Load dataset
% dataGrimmer contains the data (1000 sample per motion)
% dataGrimmer.{hip|knee|ankle}.{angleDeg|torque|theta|angle}
% N is the number of samples
%motionNames = ["Cycling"];
%motionNames = ["Sit_to_Stand"];
%motionNames = ["Climbing_descend"];
%motionNames = ["Stairs_ascend"];
%motionNames = [ "Walking_11"];
%motionNames = ["Stairs_descend"];
%motionNames = [ "Walking_16"];
motionNames = ["Lifting_Squat"];
%motionNames = ["Squat_Jump"];
%motionNames = ["Lifting_Stoop"];
%motionNames = ["Climbing_ascend"];
%motionNames = ["Recovery"];
%motionNames = ["Running_26"];
%motionNames = ["Running_40"];
[dataGrimmer, N] = loadGrimmerData('./', motionNames);
% plot (dataGrimmer.hip.theta);
% hold on;
% plot (dataGrimmer.hip.angleDeg);
start = 1;
step = 1;
stop = 1000;
%% Motors parameters
% Robot segments dimensions
dimensions.trunk = [0, 500, 0, 1];
dimensions.thigh = [0, -380, 0, 1];
dimensions.shang = [0, -358, 0, 1];
dimensions.foot = [121, -54, 0, 1];
% Enable/disable motors
robot.motors.enable.hip = true;
robot.motors.enable.knee = true;
robot.motors.enable.ankle = true;
robot.motors.enable.hip_knee = true;
robot.motors.enable.knee_ankle = true;
% Sliders length [mm]
robot.motors.sliderLength.hip = 290;
robot.motors.sliderLength.knee = 290;
robot.motors.sliderLength.ankle = 290;
robot.motors.sliderLength.hip_knee = 290;
robot.motors.sliderLength.knee_ankle = 290;
% Stator length [mm]
robot.motors.statorLength.hip = 105;
robot.motors.statorLength.knee = 105;
robot.motors.statorLength.ankle = 105;
robot.motors.statorLength.hip_knee = 105;
robot.motors.statorLength.knee_ankle = 105;
% Length of the ball joint at the end of the slider [mm]
robot.motors.ballJointLength = 20;
%% Prepare translation matrices
robot.matrices.translation = computeTranslationMatrices(dimensions);
%% Boundaries
robot.motors.lb = [ -80 -100 -80, 50, -50 , -100 ... % Hip { Xh Yh Xl Yl Offset-X Offset-Y }
-80 -80 -80 278 -50 -100 ... % Knee { Xh Yh Xl Yl Offset-X Offset-Y }
-80 0 -200 30 -50 -100 ... % Ankle { Xh Yh Xl Yl Offset-X Offset-Y }
-80 -80 -80 278 -50 -100 ... % Hip-Knee { Xh Yh Xl Yl Offset-X Offset-Y }
-80 -80 -201 30 -50 -100 ]; % Knee-Ankle { Xh Yh Xl Yl Offset-X Offset-Y }
robot.motors.ub =[ 80 500 80 480 50 100 ... % Hip { Xh Yh Xl Yl Offset-X Offset-Y }
80 480 80, 438 50 100 ... % Knee { Xh Yh Xl Yl Offset-X Offset-Y }
80 350 -41, 130 50 100 ... % Ankle { Xh Yh Xl Yl Offset-X Offset-Y }
80 80 80, 438 50 100 ... % Hip-Knee { Xh Yh Xl Yl Offset-X Offset-Y }
80 80 -39, 134 50 100]; % Knee-Ankle { Xh Yh Xl Yl Offset-X Offset-Y }
%% Initial configuration (Override in the loop to start from random positions)
x= [ -80 , 300, -80, 400, -20, 100 ... % Hip { Xh Yh Xl Yl Offset-X Offset-Y }
40, 250, 40, 380, 50, 0 ... % Knee { Xh Yh Xl Yl Offset-X Offset-Y }
60, 200, -60, 35, -20, 50 ... % Ankle { Xh Yh Xl Yl Offset-X Offset-Y }
-50, -50, -50, 400, -50, 100 ... % Hip-Knee { Xh Yh Xl Yl Offset-X Offset-Y }
-30, -100, -160, 35, -30, 70 ]; % Knee-Ankle { Xh Yh Xl Yl Offset-X Offset-Y }
% Load initial points
load(sprintf('initial-points/expe-%d.mat', expe));
for i=1:200
% Create a random initial position
%% Remove processed points
[best, index] = max(initialPoints(:,31));
data.x_initial = initialPoints(index, 1:30);
x = data.x_initial;
%fprintf('Remove index %d\n', index);
initialPoints(index, :) = [];
%x=(robot.motors.ub-robot.motors.lb).*rand(1,30)+robot.motors.lb;
% figure(2)
% gHandle = init_figure_robot();
%% Anonymous function for calling the core from fminsearchbnd
paramCore = @(x)coreOptim(x,robot, dataGrimmer, start, step, stop, expe);
%% Optimization
fprintf ('Running optimization #%d, it may really take a while...\n', epoch); tic
options = optimset('Display','off', 'TolFun', 1e-2, 'TolX', 0.1); %, 'MaxFunEvals',10);
%options = optimset('Display','off', 'TolFun', 1e-2, 'TolX', 0.1, 'MaxFunEvals',10);
[x,fval,exitflag,output] = fminsearchbnd(paramCore,x,robot.motors.lb, robot.motors.ub, options);
toc
%% Save epoch data
data.x_final = x;
data.fval = fval;
data.exitflag = exitflag;
data.output = output;
data.robot = robot;
data.best = bestWeight;
data.bestEpoch = bestEpoch;
data.bestIter = bestIter;
save(sprintf('%s/expe-%d/epoch-%d.mat', path, expe, epoch), 'data');
epoch = epoch + 1;
fprintf('\n\t----- New Epoch #%d ------ \n\n', epoch);
iter = 1;
end
%figure(1);
%plot_initial_configuration_bound(x, lb, ub, motors);
disp ('done')