-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathblur_faces_live.py
50 lines (46 loc) · 1.95 KB
/
blur_faces_live.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import cv2
import numpy as np
import time
# https://raw.githubusercontent.com/opencv/opencv/master/samples/dnn/face_detector/deploy.prototxt
prototxt_path = "weights/deploy.prototxt.txt"
# https://raw.githubusercontent.com/opencv/opencv_3rdparty/dnn_samples_face_detector_20180205_fp16/res10_300x300_ssd_iter_140000_fp16.caffemodel
model_path = "weights/res10_300x300_ssd_iter_140000_fp16.caffemodel"
# load Caffe model
model = cv2.dnn.readNetFromCaffe(prototxt_path, model_path)
cap = cv2.VideoCapture(0)
while True:
start = time.time()
_, image = cap.read()
# get width and height of the image
h, w = image.shape[:2]
kernel_width = (w // 7) | 1
kernel_height = (h // 7) | 1
# preprocess the image: resize and performs mean subtraction
blob = cv2.dnn.blobFromImage(image, 1.0, (300, 300), (104.0, 177.0, 123.0))
# set the image into the input of the neural network
model.setInput(blob)
# perform inference and get the result
output = np.squeeze(model.forward())
for i in range(0, output.shape[0]):
confidence = output[i, 2]
# get the confidence
# if confidence is above 40%, then blur the bounding box (face)
if confidence > 0.4:
# get the surrounding box cordinates and upscale them to original image
box = output[i, 3:7] * np.array([w, h, w, h])
# convert to integers
start_x, start_y, end_x, end_y = box.astype(np.int)
# get the face image
face = image[start_y: end_y, start_x: end_x]
# apply gaussian blur to this face
face = cv2.GaussianBlur(face, (kernel_width, kernel_height), 0)
# put the blurred face into the original image
image[start_y: end_y, start_x: end_x] = face
cv2.imshow("image", image)
if cv2.waitKey(1) == ord("q"):
break
time_elapsed = time.time() - start
fps = 1 / time_elapsed
print("FPS:", fps)
cv2.destroyAllWindows()
cap.release()