-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathindex.html
2287 lines (2041 loc) · 98.2 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<!DOCTYPE html>
<html lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<meta name="description" content="A list of 100 famous math theorems, some of which have been formalized in the Coq proof assistant. This page keeps track of those.">
<title>Famous theorems proven in Coq</title>
<link rel="stylesheet" href="def.css" type="text/css" media="screen,print">
<script>
var show = function(i){document.getElementById('send'+i).setAttribute('style','block'); return false;};
var _gaq = _gaq || [];
_gaq.push(['_setAccount', 'UA-17038604-1']);
_gaq.push(['_trackPageview']);
(function() {
var ga = document.createElement('script'); ga.type = 'text/javascript'; ga.async = true;
ga.src = ('https:' == document.location.protocol ? 'https://ssl' : 'http://www') + '.google-analytics.com/ga.js';
var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(ga, s);
})();
</script>
</head>
<body>
<div class="middle">
<h1>Formalizing 100 theorems in Coq</h1>
<p>
This is an appendix to Freek
Wiedijk's <a href="http://www.cs.ru.nl/~freek/100/">webpage</a> webpage
on the "top 100" mathematical theorems, to keep track of the statements
of the 79 theorems that are formalised in Coq.
</p>
<p>
Drop me or Freek an email or
<a href="https://github.com/coq-community/coq-100-theorems">
make a pull request
</a> if you have updates. Preferably edit
<a href="https://github.com/coq-community/coq-100-theorems/blob/master/statements.yml">this file</a>,
from which this page has been generated.
</p>
<p>
Options:<br>
<label><input type="checkbox" checked="checked" onclick="javascript:toggle(this, 'solved');"> Show theorems that have been formalized in Coq</label><br>
<label><input type="checkbox" checked="checked" onclick="javascript:toggle(this, 'unsolved');"> Show theorems that have not been formalized in Coq</label><br>
<label><input type="checkbox" onclick="javascript:toggle(this, 'existing');"> Show existing formalizations</label><br>
<label><input type="checkbox" onclick="javascript:toggle(this, 'axioms');"> Show axioms used</label><br>
<label><input type="checkbox" onclick="javascript:toggle(this, 'repro');"> Show some reproducibility information</label><br>
</p>
<h3 id='1' class='formalized'><a href='http://www.cs.ru.nl/~freek/100/#1'>1. The Irrationality of the Square Root of 2</a></h3>
<div>
<p class='author'><strong>many versions</strong>
(in <a href="https://github.com/coq-community/qarith-stern-brocot/blob/master/theories/sqrt2.v">coq-community/qarith-stern-brocot</a>):
</p>
<p class='comment'>One of many proofs</p>
<pre class='statement'>Theorem sqrt2_not_rational : forall p q : nat, q <> 0 -> p * p = 2 * (q * q) -> False.
</pre>
<p class='repro'>Reproducibility: Good (CI)</p>
<p class='axioms'>Constructive: yes</p>
<p class='axioms'>Axioms used: (none)</p>
<p class='existing'>Formalized in: ACL2, Coq (constructive), HOL Light, Isabelle, Lean, Metamath, Mizar, NuPRL (constructive), PVS, ProofPower</p></div>
<h3 id='2' class='formalized'><a href='http://www.cs.ru.nl/~freek/100/#2'>2. Fundamental Theorem of Algebra</a></h3>
<div>
<p class='author'><strong>Herman Geuvers et al.</strong>
(in <a href="https://github.com/coq-community/corn/blob/master/fta/FTA.v#L188">coq-community/corn</a>):
</p>
<p class='comment'></p>
<pre class='statement'>Lemma FTA : forall f : CCX, nonConst _ f -> {z : CC | f ! z [=] [0]}.
</pre>
<p class='repro'>Reproducibility: Good (CI)</p>
<p class='axioms'>Constructive: yes</p>
<p class='axioms'>Axioms used: (none)</p>
<p class='existing'>Formalized in: Coq (constructive), HOL Light, Isabelle, Lean, Metamath, Mizar, PVS, ProofPower</p></div>
<h3 id='3' class='formalized'><a href='http://www.cs.ru.nl/~freek/100/#3'>3. The Denumerability of the Rational Numbers</a></h3>
<div>
<p class='author'><strong>Milad Niqui</strong>
(in <a href="https://github.com/coq-community/qarith-stern-brocot/blob/master/theories/Q_denumerable.v">coq-community/qarith-stern-brocot</a>):
</p>
<p class='comment'></p>
<pre class='statement'>Definition same_cardinality (A:Type) (B:Type) :=
{ f : A -> B & { g : B -> A |
forall b,(compose _ _ _ f g) b = (identity B) b /\
forall a,(compose _ _ _ g f) a = (identity A) a } }.
Definition is_denumerable A := same_cardinality A nat.
Theorem Q_is_denumerable: is_denumerable Q.
</pre>
<p class='repro'>Reproducibility: Good (CI)</p>
<p class='axioms'>Constructive: yes</p>
<p class='axioms'>Axioms used: (none)</p>
<p class='author'><strong>Daniel Schepler</strong>
(in <a href="https://github.com/coq-community/topology/blob/master/theories/ZornsLemma/CountableTypes.v">coq-community/topology</a>):
</p>
<p class='comment'></p>
<pre class='statement'>Inductive CountableT (X:Type) : Prop :=
| intro_nat_injection: forall f:X->nat, injective f -> CountableT X.
Lemma Q_countable: CountableT Q.
</pre>
<p class='repro'>Reproducibility: Good (CI)</p>
<p class='axioms'>Constructive: yes</p>
<p class='axioms'>Axioms used: (none)</p>
<p class='existing'>Formalized in: Coq (constructive), HOL Light, Isabelle, Lean, Metamath, Mizar, NuPRL (constructive), PVS, ProofPower</p></div>
<h3 id='4' class='formalized'><a href='http://www.cs.ru.nl/~freek/100/#4'>4. Pythagorean Theorem</a></h3>
<div>
<p class='author'><strong>Frédérique Guilhot</strong>
(in <a href="https://github.com/coq-community/HighSchoolGeometry/blob/master/theories/euclidien_classiques.v">coq-community/HighSchoolGeometry</a>):
</p>
<p class='comment'></p>
<pre class='statement'>Theorem Pythagore :
forall A B C : PO,
orthogonal (vec A B) (vec A C) <->
Rsqr (distance B C) = Rsqr (distance A B) + Rsqr (distance A C) :>R.
</pre>
<p class='repro'>Reproducibility: Good (CI)</p>
<p class='axioms'>Constructive: no</p>
<p class='axioms'>Axioms used:</p>
<ul class='axioms'>
<li>ClassicalDedekindReals.sig_not_dec</li>
<li>ClassicalDedekindReals.sig_forall_dec</li>
<li>FunctionalExtensionality.functional_extensionality_dep</li>
<li>classic</li>
<li>other geometry axioms</li>
</ul>
<p class='author'><strong>Gabriel Braun</strong>
(in <a href="https://github.com/GeoCoq/GeoCoq/blob/master/Tarski_dev/Ch15_lengths.v">https://github.com/GeoCoq/GeoCoq/blob/master/Tarski_dev/Ch15_lengths.v</a>):
</p>
<p class='comment'>A synthetic proof in the context of Tarski's axioms.</p>
<pre class='statement'>Lemma pythagoras :
forall
(Tn : Tarski_neutral_dimensionless)
(TnEQD : Tarski_neutral_dimensionless_with_decidable_point_equality Tn),
Tarski_2D TnEQD ->
Tarski_euclidean TnEQD ->
forall
O E E' A B C AC BC AB AC2 BC2
AB2 : Tpoint,
O <> E ->
Per A C B ->
Length O E E' A B AB ->
Length O E E' A C AC ->
Length O E E' B C BC ->
Prod O E E' AC AC AC2 ->
Prod O E E' BC BC BC2 ->
Prod O E E' AB AB AB2 ->
Sum O E E' AC2 BC2 AB2.
</pre>
<p class='repro'>Reproducibility: last checked December 2022 with Coq 8.16</p>
<p class='axioms'>Constructive: hypotheses partially classical</p>
<p class='axioms'>Axioms used:</p>
<ul class='axioms'>
<li>Eqdep.Eq_rect_eq.eq_rect_eq</li>
</ul>
<p class='existing'>Formalized in: Coq, HOL Light, Isabelle, Lean, Metamath, Mizar, PVS, ProofPower</p></div>
<h3 id='5' class='notformalizedyet'><a href='http://www.cs.ru.nl/~freek/100/#5'>5. Prime Number Theorem</a></h3>
<div>
<p class='existing'>Formalized in: HOL Light, Isabelle, Metamath</p></div>
<h3 id='6' class='formalized'><a href='http://www.cs.ru.nl/~freek/100/#6'>6. Gödel’s Incompleteness Theorem</a></h3>
<div>
<p class='author'><strong>Russell O'Connor</strong>
(in <a href="https://github.com/coq-community/hydra-battles/blob/master/theories/goedel/">coq-community/hydra-battles</a>):
</p>
<p class='comment'>The second theorem assumes the last two Hilbert-Bernays-Loeb derivability conditions.</p>
<pre class='statement'>(* in goedel1.v *)
Theorem Goedel'sIncompleteness1st :
wConsistent T ->
exists f : Formula,
~ SysPrf T f /\
~ SysPrf T (notH f) /\ (forall v : nat, ~ In v (freeVarFormula LNN f)).
(* in goedel2.v *)
Hypothesis HBL2 : forall f, SysPrf T (impH (box f) (box (box f))).
Hypothesis HBL3 : forall f g, SysPrf T (impH (box (impH f g)) (impH (box f) (box g))).
Theorem SecondIncompletness :
SysPrf T Con -> Inconsistent LNT T.
</pre>
<p class='repro'>Reproducibility: Good (CI)</p>
<p class='axioms'>Constructive: yes</p>
<p class='axioms'>Axioms used: (none)</p>
<p class='existing'>Formalized in: Coq (constructive), HOL Light, Isabelle, nqthm</p></div>
<h3 id='7' class='formalized'><a href='http://www.cs.ru.nl/~freek/100/#7'>7. Law of Quadratic Reciprocity</a></h3>
<div>
<p class='author'><strong>Nathanaëlle Courant</strong>
(in <a href="https://github.com/Ekdohibs/coq-proofs/blob/master/Reciprocity/Reciprocity.v#L1560">https://github.com/Ekdohibs/coq-proofs/blob/master/Reciprocity/Reciprocity.v#L1560</a>):
</p>
<p class='comment'></p>
<pre class='statement'>Theorem Quadratic_reciprocity :
(legendre p q) * (legendre q p) = (-1) ^ (((p - 1) / 2) * ((q - 1) / 2)).
</pre>
<p class='repro'>Reproducibility: last checked December 2022 with Coq 8.16</p>
<p class='axioms'>Constructive: no</p>
<p class='axioms'>Axioms used:</p>
<ul class='axioms'>
<li>proof_irrelevance</li>
<li>constructive_definite_description</li>
<li>classic</li>
</ul>
<p class='existing'>Formalized in: Coq, HOL Light, Isabelle, Lean, Metamath, Mizar, nqthm</p></div>
<h3 id='8' class='notformalizedyet'><a href='http://www.cs.ru.nl/~freek/100/#8'>8. The Impossibility of Trisecting the Angle and Doubling the Cube</a></h3>
<div>
<p class='existing'>Formalized in: HOL Light, Isabelle</p></div>
<h3 id='9' class='notformalizedyet'><a href='http://www.cs.ru.nl/~freek/100/#9'>9. The Area of a Circle</a></h3>
<div>
<p class='existing'>Formalized in: HOL Light, Isabelle, Lean, Metamath, ProofPower</p></div>
<h3 id='10' class='formalized'><a href='http://www.cs.ru.nl/~freek/100/#10'>10. Euler’s Generalization of Fermat’s Little Theorem</a></h3>
<div>
<p class='author'><strong>Laurent Théry</strong>
(in <a href="https://github.com/math-comp/math-comp/blob/master/mathcomp/solvable/cyclic.v">mathcomp</a>):
</p>
<p class='comment'></p>
<pre class='statement'>Theorem Euler_exp_totient a n : coprime a n -> a ^ totient n = 1 %[mod n].
</pre>
<p class='repro'>Reproducibility: Good (CI)</p>
<p class='axioms'>Constructive: yes</p>
<p class='axioms'>Axioms used: (none)</p>
<p class='existing'>Formalized in: Coq (constructive), HOL Light, Isabelle, Lean, Metamath, Mizar</p></div>
<h3 id='11' class='formalized'><a href='http://www.cs.ru.nl/~freek/100/#11'>11. The Infinitude of Primes</a></h3>
<div>
<p class='author'><strong>Russell O'Connor</strong>
(in <a href="https://coq.inria.fr/cocorico/NotFinitePrimes">cocorico</a>):
</p>
<p class='comment'>This statement was formerly in cocorico, compatible with Coq 7.3</p>
<pre class='statement'>Theorem ManyPrimes : ~(EX l:(list Prime) | (p:Prime)(In p l)).
</pre>
<p class='repro'>Reproducibility: old proof compatible with Coq 7.3</p>
<p class='axioms'>Constructive: yes</p>
<p class='axioms'>Axioms used: (none)</p>
<p class='author'><strong>Georges Gonthier</strong>
(in <a href="https://x80.org/rhino-coq/">https://x80.org/rhino-coq/</a>):
</p>
<p class='comment'>There are other proofs of this theorem but you can browse this one in your browser with JsCoq.</p>
<pre class='statement'>Lemma prime_above m : {p | m < p & prime p}.
</pre>
<p class='repro'>Reproducibility: last checked December 2022 with Coq 8.16</p>
<p class='axioms'>Constructive: yes</p>
<p class='axioms'>Axioms used: (none)</p>
<p class='existing'>Formalized in: ACL2, Coq (constructive), HOL Light, Isabelle, Lean, Metamath, Mizar, PVS, ProofPower</p></div>
<h3 id='12' class='notformalizedyet'><a href='http://www.cs.ru.nl/~freek/100/#12'>12. The Independence of the Parallel Postulate</a></h3>
<div>
<p class='existing'>Formalized in: HOL Light, Isabelle</p></div>
<h3 id='13' class='formalized'><a href='http://www.cs.ru.nl/~freek/100/#13'>13. Polyhedron Formula</a></h3>
<div>
<p class='author'><strong>Jean-François Dufourd</strong>
(in <a href="https://github.com/coq-contribs/euler-formula/blob/master/Euler3.v">coq-contribs/euler-formula</a>):
</p>
<p class='comment'></p>
<pre class='statement'>(* nc : number of connected components
nv : number of vertices
ne : number of edges
nf : number of faces
nd : number of darts
plf m : m is a planar formation
inv_qhmap : see Euler1.v *)
Theorem Euler_Poincare_criterion: forall m:fmap,
inv_qhmap m -> (plf m <-> (nv m + ne m + nf m - nd m) / 2 = nc m).
</pre>
<p class='repro'>Reproducibility: as of December 2022, build success with Coq 8.13.2, failure with 8.14.1 (using git tag v8.11.0)</p>
<p class='axioms'>Constructive: to be determined</p>
<p class='axioms'>Axioms used:</p>
<ul class='axioms'>
<li>Euler3.expf_clos_symm</li>
</ul>
<p class='existing'>Formalized in: Coq (constructive), HOL Light, Mizar</p></div>
<h3 id='14' class='formalized'><a href='http://www.cs.ru.nl/~freek/100/#14'>14. Euler’s Summation of 1 + (1/2)^2 + (1/3)^2 + ….</a></h3>
<div>
<p class='author'><strong>Jean-Marie Madiot</strong>
(in <a href="https://github.com/coq-community/coqtail-math/blob/master/Reals/Rzeta2.v">coq-community/coqtail-math</a>):
</p>
<p class='comment'></p>
<pre class='statement'>Theorem zeta2_pi_2_6 : Rser_cv (fun n => 1 / (n + 1) ^ 2) (PI ^ 2 / 6).
</pre>
<p class='repro'>Reproducibility: Good (CI)</p>
<p class='axioms'>Constructive: no</p>
<p class='axioms'>Axioms used:</p>
<ul class='axioms'>
<li>ClassicalDedekindReals.sig_not_dec</li>
<li>ClassicalDedekindReals.sig_forall_dec</li>
<li>functional_extensionality_dep</li>
<li>classic</li>
</ul>
<p class='existing'>Formalized in: Coq, HOL Light, Isabelle, Lean, Metamath, Mizar</p></div>
<h3 id='15' class='formalized'><a href='http://www.cs.ru.nl/~freek/100/#15'>15. Fundamental Theorem of Integral Calculus</a></h3>
<div>
<p class='author'><strong>Luís Cruz-Filipe</strong>
(in <a href="https://github.com/coq-community/corn/blob/master/ftc/FTC.v#L181">coq-community/corn</a>):
</p>
<p class='comment'></p>
<pre class='statement'>Theorem FTC1 : Derivative J pJ G F.
Theorem FTC2 : {c : IR | Feq J (G{-}G0) [-C-]c}.
</pre>
<p class='repro'>Reproducibility: Good (CI)</p>
<p class='axioms'>Constructive: yes</p>
<p class='axioms'>Axioms used: (none)</p>
<p class='author'><strong>The Coq development team</strong>
(in <a href="https://coq.inria.fr/library/Coq.Reals.RiemannInt.html">coq's standard library</a>):
</p>
<p class='comment'></p>
<pre class='statement'>Lemma FTC_Riemann :
forall (f:C1_fun) (a b:R) (pr:Riemann_integrable (derive f (diff0 f)) a b),
RiemannInt pr = f b - f a.
</pre>
<p class='repro'>Reproducibility: Good (CI)</p>
<p class='axioms'>Constructive: no</p>
<p class='axioms'>Axioms used:</p>
<ul class='axioms'>
<li>ClassicalDedekindReals.sig_not_dec</li>
<li>ClassicalDedekindReals.sig_forall_dec</li>
<li>functional_extensionality_dep</li>
<li>classic</li>
</ul>
<p class='existing'>Formalized in: ACL2, Coq (constructive), HOL Light, Isabelle, Lean, Metamath, Mizar, PVS, ProofPower</p></div>
<h3 id='16' class='formalized'><a href='http://www.cs.ru.nl/~freek/100/#16'>16. Insolvability of General Higher Degree Equations</a></h3>
<div>
<p class='author'><strong>Sophie Bernard, Cyril Cohen, Assia Mahboubi, Pierre-Yves Strub</strong>
(in <a href="https://github.com/math-comp/Abel/blob/7a85e03fcd1b8d772d592fd53afe753b49f8fe96/theories/abel.v#L1454-L1455">mathcomp</a>):
</p>
<p class='comment'></p>
<pre class='statement'>Lemma example_not_solvable_by_radicals :
~ solvable_by_radical_poly ('X^5 - 4 *: 'X + 2 : {poly rat}).
</pre>
<p class='repro'>Reproducibility: Good (CI)</p>
<p class='axioms'>Constructive: yes</p>
<p class='axioms'>Axioms used: (none)</p>
<p class='existing'>Formalized in: Coq, Lean</p></div>
<h3 id='17' class='formalized'><a href='http://www.cs.ru.nl/~freek/100/#17'>17. DeMoivre’s Theorem</a></h3>
<div>
<p class='author'><strong>Coqtail team</strong>
(in <a href="https://github.com/coq-community/coqtail-math/blob/master/Complex/Cexp.v">coq-community/coqtail-math</a>):
</p>
<p class='comment'>De Moivre's formula is easily deduced from Euler's formula thanks to e^(n*z)=(e^z)^n.</p>
<pre class='statement'>Lemma Cexp_trigo_compat : forall a, Cexp (0 +i a) = cos a +i sin a.
Lemma Cexp_mult : forall a n, Cexp (INC n * a) = (Cexp a) ^ n.
</pre>
<p class='repro'>Reproducibility: Good (CI)</p>
<p class='axioms'>Constructive: no</p>
<p class='axioms'>Axioms used:</p>
<ul class='axioms'>
<li>ClassicalDedekindReals.sig_not_dec</li>
<li>ClassicalDedekindReals.sig_forall_dec</li>
<li>functional_extensionality_dep</li>
</ul>
<p class='existing'>Formalized in: Coq, HOL Light, Isabelle, Lean, Metamath, Mizar, ProofPower</p></div>
<h3 id='18' class='formalized'><a href='http://www.cs.ru.nl/~freek/100/#18'>18. Liouville’s Theorem and the Construction of Transcendental Numbers</a></h3>
<div>
<p class='author'><strong>Valentin Blot</strong>
(in <a href="https://github.com/coq-community/corn/blob/master/liouville/Liouville.v">coq-community/corn</a>):
</p>
<p class='comment'></p>
<pre class='statement'>Theorem Liouville_theorem2 :
{n : nat | {C : IR | Zero [<] C | forall (x : Q),
(C[*]inj_Q IR (1#Qden x)%Q[^]n) [<=] AbsIR (inj_Q _ x [-] a)}}.
</pre>
<p class='repro'>Reproducibility: Good (CI)</p>
<p class='axioms'>Constructive: yes</p>
<p class='axioms'>Axioms used: (none)</p>
<p class='existing'>Formalized in: Coq (constructive), HOL Light, Isabelle, Lean, Metamath, Mizar</p></div>
<h3 id='19' class='formalized'><a href='http://www.cs.ru.nl/~freek/100/#19'>19. Four Squares Theorem</a></h3>
<div>
<p class='author'><strong>Guillaume Allais, Jean-Marie Madiot</strong>
(in <a href="https://github.com/coq-community/coqtail-math/blob/master/Arith/Lagrange_four_square.v">coq-community/coqtail-math</a>):
</p>
<p class='comment'>Coq extraction produces a program that indeed computes a, b, c, d</p>
<pre class='statement'>Theorem lagrange_4_square_theorem : forall n, 0 <= n ->
{ a : _ & { b: _ & { c : _ & { d |
n = a * a + b * b + c * c + d * d } } } }.
</pre>
<p class='repro'>Reproducibility: Good (CI)</p>
<p class='axioms'>Constructive: yes</p>
<p class='axioms'>Axioms used: (none)</p>
<p class='existing'>Formalized in: Coq (constructive), HOL Light, Isabelle, Lean, Metamath, Mizar, PVS</p></div>
<h3 id='20' class='formalized'><a href='http://www.cs.ru.nl/~freek/100/#20'>20. All Primes (= 1 mod 4) Equal the Sum of Two Squares</a></h3>
<div>
<p class='author'><strong>Laurent Théry</strong>
(in <a href="https://github.com/coq-contribs/sum-of-two-square/blob/master/TwoSquares.v#L641">coq-contribs/sum-of-two-square</a>):
</p>
<p class='comment'></p>
<pre class='statement'>Definition sum_of_two_squares :=
fun p => exists a , exists b , p = a * a + b * b.
Theorem two_squares_exists:
forall p, prime p -> p = 2 \/ Zis_mod p 1 4 -> sum_of_two_squares p.
</pre>
<p class='repro'>Reproducibility: as of December 2022, build success with Coq 8.10.2, failure with 8.11.2 (using git tag v8.10.0)</p>
<p class='axioms'>Constructive: yes</p>
<p class='axioms'>Axioms used: (none)</p>
<p class='author'><strong>Laurent Théry</strong>
(in <a href="https://github.com/thery/twoSquare/blob/master/fermat2.v">https://github.com/thery/twoSquare/blob/master/fermat2.v</a>):
</p>
<p class='comment'>proof using gaussian integers and mathcomp</p>
<pre class='statement'>Lemma sum2sprime p :
odd p -> prime p -> p \is a sum_of_two_square = (p %% 4 == 1).
</pre>
<p class='repro'>Reproducibility: last checked December 2022 with Coq 8.16</p>
<p class='axioms'>Constructive: yes</p>
<p class='axioms'>Axioms used: (none)</p>
<p class='existing'>Formalized in: Coq (constructive), HOL Light, Isabelle, Lean, Metamath, Mizar, PVS, ProofPower</p></div>
<h3 id='21' class='notformalizedyet'><a href='http://www.cs.ru.nl/~freek/100/#21'>21. Green’s Theorem</a></h3>
<div>
<p class='existing'>Formalized in: Isabelle</p></div>
<h3 id='22' class='formalized'><a href='http://www.cs.ru.nl/~freek/100/#22'>22. The Non-Denumerability of the Continuum</a></h3>
<div>
<p class='author'><strong>Pierre-Marie Pédrot</strong>
(in <a href="https://github.com/coq-community/coqtail-math/blob/master/Reals/Logic/Runcountable.v">coq-community/coqtail-math</a>):
</p>
<p class='comment'></p>
<pre class='statement'>Theorem R_uncountable : forall (f : nat -> R),
{l : R | forall n, l <> f n}.
Theorem R_uncountable_strong : forall (f : nat -> R) (x y : R),
x < y -> {l : R | forall n, l <> f n & x <= l <= y}.
</pre>
<p class='repro'>Reproducibility: Good (CI)</p>
<p class='axioms'>Constructive: no</p>
<p class='axioms'>Axioms used:</p>
<ul class='axioms'>
<li>ClassicalDedekindReals.sig_not_dec</li>
<li>ClassicalDedekindReals.sig_forall_dec</li>
<li>functional_extensionality_dep</li>
</ul>
<p class='author'><strong>C-CoRN team</strong>
(in <a href="https://github.com/coq-community/corn/blob/master/reals/RealCount.v#L362">coq-community/corn</a>):
</p>
<p class='comment'></p>
<pre class='statement'>Theorem reals_not_countable :
forall (f : nat -> IR), {x :IR | forall n : nat, x [#] (f n)}.
</pre>
<p class='repro'>Reproducibility: Good (CI)</p>
<p class='axioms'>Constructive: yes</p>
<p class='axioms'>Axioms used: (none)</p>
<p class='existing'>Formalized in: Coq (constructive), HOL Light, Isabelle, Lean, Metamath, Mizar, ProofPower</p></div>
<h3 id='23' class='formalized'><a href='http://www.cs.ru.nl/~freek/100/#23'>23. Formula for Pythagorean Triples</a></h3>
<div>
<p class='author'><strong>David Delahaye</strong>
(in <a href="https://github.com/coq-contribs/fermat4/blob/master/Pythagorean.v">coq-contribs/fermat4</a>):
</p>
<p class='comment'></p>
<pre class='statement'>Lemma pytha_thm3 : forall a b c : Z,
is_pytha a b c -> Zodd a ->
exists p : Z, exists q : Z, exists m : Z,
a = m * (q * q - p * p) /\ b = 2 * m * (p * q) /\
c = m * (p * p + q * q) /\ m >= 0 /\
p >= 0 /\ q > 0 /\ p <= q /\ (rel_prime p q) /\
(distinct_parity p q).
</pre>
<p class='repro'>Reproducibility: as of December 2022, build success with Coq 8.11.2, failure with 8.12.2 (using git tag v8.10.0)</p>
<p class='axioms'>Constructive: no</p>
<p class='axioms'>Axioms used:</p>
<ul class='axioms'>
<li>Coq's axioms for real numbers</li>
</ul>
<p class='existing'>Formalized in: Coq (constructive), HOL Light, Isabelle, Lean, Metamath, Mizar, ProofPower</p></div>
<h3 id='24' class='notformalizedyet'><a href='http://www.cs.ru.nl/~freek/100/#24'>24. The Undecidability of the Continuum Hypothesis</a></h3>
<div>
<p class='existing'>Formalized in: Isabelle, Lean</p></div>
<h3 id='25' class='formalized'><a href='http://www.cs.ru.nl/~freek/100/#25'>25. Schroeder-Bernstein Theorem</a></h3>
<div>
<p class='author'><strong>Hugo Herbelin</strong>
(in <a href="https://github.com/coq-contribs/schroeder/blob/master/Schroeder.v">coq-contribs/schroeder</a>):
</p>
<p class='comment'></p>
<pre class='statement'>Theorem Schroeder : A <=_card B -> B <=_card A -> A =_card B.
</pre>
<p class='repro'>Reproducibility: as of December 2022, build success with Coq 8.16 (using git tag v8.11.0)</p>
<p class='axioms'>Constructive: no</p>
<p class='axioms'>Axioms used:</p>
<ul class='axioms'>
<li>classic</li>
<li>Extensionality_Ensembles</li>
</ul>
<p class='author'><strong>Daniel Schepler</strong>
(in <a href="https://github.com/coq-community/topology/blob/master/theories/ZornsLemma/CSB.v">coq-community/topology</a>):
</p>
<p class='comment'></p>
<pre class='statement'>Theorem CSB (X Y : Type) (f : X -> Y) (g : Y -> X) :
injective f ->
injective g ->
exists h : X -> Y, bijective h.
</pre>
<p class='repro'>Reproducibility: Good (CI)</p>
<p class='axioms'>Constructive: no</p>
<p class='axioms'>Axioms used:</p>
<ul class='axioms'>
<li>constructive_definite_description</li>
<li>classic</li>
</ul>
<p class='existing'>Formalized in: Coq (constructive), HOL Light, Isabelle, Lean, Metamath, Mizar, ProofPower</p></div>
<h3 id='26' class='formalized'><a href='http://www.cs.ru.nl/~freek/100/#26'>26. Leibniz’s Series for Pi</a></h3>
<div>
<p class='author'><strong>Guillaume Allais</strong>
(in <a href="https://coq.inria.fr/library/Coq.Reals.Ratan.html">coq's standard library</a>):
</p>
<p class='comment'></p>
<pre class='statement'>Lemma PI_2_aux : {z : R | 7 / 8 <= z <= 7 / 4 /\ - cos z = 0}.
Definition PI := 2 * proj1_sig PI_2_aux.
Definition PI_tg n := / INR (2 * n + 1).
Lemma exists_PI : {l:R | Un_cv (fun N => sum_f_R0 (tg_alt PI_tg) N) l}.
Definition Alt_PI : R := 4 * (let (a,_) := exist_PI in a).
Theorem Alt_PI_eq : Alt_PI = PI.
</pre>
<p class='repro'>Reproducibility: Good (CI)</p>
<p class='axioms'>Constructive: no</p>
<p class='axioms'>Axioms used:</p>
<ul class='axioms'>
<li>ClassicalDedekindReals.sig_not_dec</li>
<li>ClassicalDedekindReals.sig_forall_dec</li>
<li>functional_extensionality_dep</li>
<li>classic</li>
</ul>
<p class='author'><strong>Luís Cruz-Filipe</strong>
(in <a href="https://github.com/coq-community/corn/blob/master/transc/MoreArcTan.v#L553">coq-community/corn</a>):
</p>
<p class='comment'></p>
<pre class='statement'>Lemma ArcTan_one : ArcTan One[=]Pi[/]FourNZ.
Lemma arctan_series : forall c : IR,
forall (Hs :
fun_series_convergent_IR
(olor ([--]One) One)
(fun i =>
(([--]One)[^]i[/]nring (S (2*i))
[//] nringS_ap_zero _ (2*i)){**}Fid IR{^}(2*i+1)))
Hc,
FSeries_Sum Hs c Hc[=]ArcTan c.
</pre>
<p class='repro'>Reproducibility: Good (CI)</p>
<p class='axioms'>Constructive: yes</p>
<p class='axioms'>Axioms used: (none)</p>
<p class='existing'>Formalized in: Coq (constructive), HOL Light, Isabelle, Lean, Metamath, Mizar, PVS</p></div>
<h3 id='27' class='formalized'><a href='http://www.cs.ru.nl/~freek/100/#27'>27. Sum of the Angles of a Triangle</a></h3>
<div>
<p class='author'><strong>Frédérique Guilhot</strong>
(in <a href="https://github.com/coq-community/HighSchoolGeometry/blob/master/theories/angles_vecteurs.v">coq-community/HighSchoolGeometry</a>):
</p>
<p class='comment'></p>
<pre class='statement'>Theorem somme_triangle :
forall A B C : PO,
A <> B :>PO ->
A <> C :>PO ->
B <> C :>PO ->
plus (cons_AV (vec A B) (vec A C))
(plus (cons_AV (vec B C) (vec B A)) (cons_AV (vec C A) (vec C B))) =
image_angle pi :>AV.
</pre>
<p class='repro'>Reproducibility: Good (CI)</p>
<p class='axioms'>Constructive: no</p>
<p class='axioms'>Axioms used:</p>
<ul class='axioms'>
<li>ClassicalDedekindReals.sig_not_dec</li>
<li>ClassicalDedekindReals.sig_forall_dec</li>
<li>functional_extensionality_dep</li>
<li>classic</li>
<li>many geometry axioms</li>
</ul>
<p class='author'><strong>Boutry, Gries, Narboux</strong>
(in <a href="https://github.com/GeoCoq/GeoCoq/blob/master/Meta_theory/Parallel_postulates/parallel_postulates.v">https://github.com/GeoCoq/GeoCoq/blob/master/Meta_theory/Parallel_postulates/parallel_postulates.v</a>):
</p>
<p class='comment'>It is shown that the sum of angles is two rights is equivalent to other versions of the parallel postulate</p>
<pre class='statement'>Theorem equivalent_postulates_assuming_greenberg_s_axiom :
greenberg_s_axiom ->
all_equiv
(alternate_interior_angles_postulate::
alternative_playfair_s_postulate::
alternative_proclus_postulate::
alternative_strong_parallel_postulate::
consecutive_interior_angles_postulate::
euclid_5::
euclid_s_parallel_postulate::
existential_playfair_s_postulate::
existential_thales_postulate::
inverse_projection_postulate::
midpoint_converse_postulate::
perpendicular_transversal_postulate::
postulate_of_transitivity_of_parallelism::
playfair_s_postulate::
posidonius_postulate::
universal_posidonius_postulate::
postulate_of_existence_of_a_right_lambert_quadrilateral::
postulate_of_existence_of_a_right_saccheri_quadrilateral::
postulate_of_existence_of_a_triangle_whose_angles_sum_to_two_rights::
postulate_of_existence_of_similar_triangles::
postulate_of_parallelism_of_perpendicular_transversals::
postulate_of_right_lambert_quadrilaterals::
postulate_of_right_saccheri_quadrilaterals::
postulate_of_transitivity_of_parallelism::
proclus_postulate::
strong_parallel_postulate::
tarski_s_parallel_postulate::
thales_postulate::
thales_converse_postulate::
triangle_circumscription_principle::
triangle_postulate::
nil).
</pre>
<p class='repro'>Reproducibility: last checked December 2022 with Coq 8.16</p>
<p class='axioms'>Constructive: yes</p>
<p class='axioms'>Axioms used:</p>
<ul class='axioms'>
<li>Eqdep.Eq_rect_eq.eq_rect_eq</li>
</ul>
<p class='existing'>Formalized in: Coq, HOL Light, Isabelle, Lean, Metamath, Mizar</p></div>
<h3 id='28' class='formalized'><a href='http://www.cs.ru.nl/~freek/100/#28'>28. Pascal’s Hexagon Theorem</a></h3>
<div>
<p class='author'><strong>Magaud and Narboux</strong>
(in <a href="https://github.com/coq-contribs/projective-geometry/blob/master/Plane/hexamys.v">coq-contribs/projective-geometry</a>):
</p>
<p class='comment'></p>
<pre class='statement'>Definition is_hexamy A B C D E F :=
(A<>B / A<>C / A<>D / A<>E / A<>F /
B<>C / B<>D / B<>E / B<>F /
C<>D / C<>E / C<>F /
D<>E / D<>F /
E<>F) /
let a:= inter (line B C) (line E F) in
let b:= inter (line C D) (line F A) in
let c:= inter (line A B) (line D E) in
Col a b c.
Lemma hexamy_prop: pappus_strong -> forall A B C D E F,
(line C D) <> (line A F) ->
(line B C) <> (line E F) ->
(line A B) <> (line D E) ->
(line A C) <> (line E F) ->
(line B F) <> (line C D) ->
is_hexamy A B C D E F -> is_hexamy B A C D E F.
</pre>
<p class='repro'>Reproducibility: as of December 2022, build success with Coq 8.13.2, failure with 8.14.1 (using git tag v8.10.0)</p>
<p class='axioms'>Constructive: no</p>
<p class='axioms'>Axioms used:</p>
<ul class='axioms'>
<li>many projective geometry axioms</li>
<li>including decidability of incidence</li>
</ul>
<p class='existing'>Formalized in: Coq, HOL Light, Mizar</p></div>
<h3 id='29' class='formalized'><a href='http://www.cs.ru.nl/~freek/100/#29'>29. Feuerbach’s Theorem</a></h3>
<div>
<p class='author'><strong>Benjamin Grégoire, Loïc Pottier, and Laurent Théry</strong>
(in <a href="https://github.com/coq/coq/blob/master/test-suite/success/Nsatz.v#L376">Coq's test suite</a>):
</p>
<p class='comment'></p>
<pre class='statement'>Lemma Feuerbach: forall A B C A1 B1 C1 O A2 B2 C2 O2:point,
forall r r2:R,
X A = 0 -> Y A = 0 -> X B = 1 -> Y B = 0->
middle A B C1 -> middle B C A1 -> middle C A B1 ->
distance2 O A1 = distance2 O B1 ->
distance2 O A1 = distance2 O C1 ->
collinear A B C2 -> orthogonal A B O2 C2 ->
collinear B C A2 -> orthogonal B C O2 A2 ->
collinear A C B2 -> orthogonal A C O2 B2 ->
distance2 O2 A2 = distance2 O2 B2 ->
distance2 O2 A2 = distance2 O2 C2 ->
r^2%Z = distance2 O A1 ->
r2^2%Z = distance2 O2 A2 ->
distance2 O O2 = (r + r2)^2%Z
\/ distance2 O O2 = (r - r2)^2%Z
\/ collinear A B C.
</pre>
<p class='repro'>Reproducibility: Good (CI)</p>
<p class='axioms'>Constructive: no</p>
<p class='axioms'>Axioms used:</p>
<ul class='axioms'>
<li>ClassicalDedekindReals.sig_forall_dec</li>
<li>functional_extensionality_dep</li>
</ul>
<p class='existing'>Formalized in: Coq (constructive), HOL Light</p></div>
<h3 id='30' class='formalized'><a href='http://www.cs.ru.nl/~freek/100/#30'>30. The Ballot Problem</a></h3>
<div>
<p class='author'><strong>Jean-Marie Madiot</strong>
(in <a href="https://github.com/coq-community/coq-100-theorems/blob/master/ballot.v">coq-community/coq-100-theorems</a>):
</p>
<p class='comment'></p>
<pre class='statement'>Theorem bertrand_ballot p q :
let l := filter (fun votes => count_votes votes "A" =? p) (picks (p + q) ["A"; "B"]) in
p >= q ->
(p + q) * List.length (filter (throughout (wins "A" "B")) l) =
(p - q) * List.length (filter (wins "A" "B") l).
</pre>
<p class='repro'>Reproducibility: Good (CI)</p>
<p class='axioms'>Constructive: yes</p>
<p class='axioms'>Axioms used: (none)</p>
<p class='existing'>Formalized in: Coq, HOL Light, Isabelle, Lean, Metamath, Mizar, ProofPower</p></div>
<h3 id='31' class='formalized'><a href='http://www.cs.ru.nl/~freek/100/#31'>31. Ramsey’s Theorem</a></h3>
<div>
<p class='author'><strong>Frédéric Blanqui</strong>
(in <a href="https://github.com/fblanqui/color/blob/master/Util/Set_/Ramsey.v">color</a>):
</p>
<p class='comment'></p>
<pre class='statement'>Theorem ramsey A (W : set A) n (P : Pinf W) B : forall (C : Pf B)
(f : Pcard P (S n) -> elts C), Proper (Pcard_equiv ==> elts_eq) f ->
exists c (Q : Pinf P), forall X : Pcard Q (S n), f (Pcard_subset Q X) = c.
</pre>
<p class='repro'>Reproducibility: Good (CI)</p>
<p class='axioms'>Constructive: no</p>
<p class='axioms'>Axioms used:</p>
<ul class='axioms'>
<li>CoLoR.Util.Logic.DepChoice.dep_choice</li>
<li>ClassicalEpsilon.constructive_indefinite_description</li>
<li>Description.constructive_definite_description</li>
<li>classic</li>
</ul>
<p class='existing'>Formalized in: Coq (constructive), HOL Light, Isabelle, Lean, Metamath, Mizar, NuPRL (constructive), PVS, ProofPower, nqthm</p></div>
<h3 id='32' class='formalized'><a href='http://www.cs.ru.nl/~freek/100/#32'>32. The Four Color Problem</a></h3>
<div>
<p class='author'><strong>Georges Gonthier, Benjamin Werner</strong>
(in <a href="https://github.com/coq-community/fourcolor/blob/master/theories/fourcolor.v">coq-community/fourcolor</a>):
</p>
<p class='comment'></p>
<pre class='statement'>Theorem four_color m : simple_map m -> colorable_with 4 m.
</pre>
<p class='repro'>Reproducibility: Good (CI)</p>
<p class='axioms'>Constructive: yes</p>
<p class='axioms'>Axioms used: (none)</p>
<p class='existing'>Formalized in: Coq</p></div>
<h3 id='33' class='notformalizedyet'><a href='http://www.cs.ru.nl/~freek/100/#33'>33. Fermat’s Last Theorem</a></h3>
<div>
<p class='existing'>Formalized in: (none)</p></div>
<h3 id='34' class='formalized'><a href='http://www.cs.ru.nl/~freek/100/#34'>34. Divergence of the Harmonic Series</a></h3>
<div>
<p class='author'><strong>Coqtail</strong>
(in <a href="https://github.com/coq-community/coqtail-math/blob/master/Reals/Rseries/Rseries_RiemannInt.v">coq-community/coqtail-math</a>):
</p>
<p class='comment'></p>
<pre class='statement'>Lemma harmonic_series_equiv : (sum_f_R0 (fun n ⇒ / (S n))) ~ (fun n ⇒ ln (S (S n))).
</pre>
<p class='repro'>Reproducibility: Good (CI)</p>
<p class='axioms'>Constructive: no</p>
<p class='axioms'>Axioms used:</p>
<ul class='axioms'>
<li>ClassicalDedekindReals.sig_not_dec</li>
<li>ClassicalDedekindReals.sig_forall_dec</li>
<li>functional_extensionality_dep</li>
<li>classic</li>
</ul>
<p class='existing'>Formalized in: Coq (constructive), HOL Light, Isabelle, Lean, Metamath, Mizar, PVS, ProofPower</p></div>
<h3 id='35' class='formalized'><a href='http://www.cs.ru.nl/~freek/100/#35'>35. Taylor’s Theorem</a></h3>
<div>
<p class='author'><strong>Luís Cruz-Filipe</strong>
(in <a href="https://github.com/coq-community/corn/blob/master/ftc/Taylor.v#L355">coq-community/corn</a>):
</p>
<p class='comment'></p>
<pre class='statement'>Theorem Taylor : forall e, Zero [<] e -> forall Hb',
{c : IR | Compact (Min_leEq_Max a b) c |
forall Hc, AbsIR (F b Hb'[-]Part _ _ Taylor_aux[-]deriv_Sn c Hc[*] (b[-]a)) [<=] e}.
</pre>
<p class='repro'>Reproducibility: Good (CI)</p>
<p class='axioms'>Constructive: yes</p>
<p class='axioms'>Axioms used: (none)</p>
<p class='existing'>Formalized in: ACL2, Coq (constructive), HOL Light, Isabelle, Lean, Metamath, Mizar, PVS, ProofPower</p></div>
<h3 id='36' class='notformalizedyet'><a href='http://www.cs.ru.nl/~freek/100/#36'>36. Brouwer Fixed Point Theorem</a></h3>
<div>
<p class='existing'>Formalized in: HOL Light, Isabelle, Mizar</p></div>
<h3 id='37' class='formalized'><a href='http://www.cs.ru.nl/~freek/100/#37'>37. The Solution of a Cubic</a></h3>
<div>
<p class='author'><strong>Frédéric Chardard</strong>
(in <a href="https://github.com/coq-community/coq-100-theorems/blob/master/cardan_ferrari.v">coq-community/coq-100-theorems</a>):
</p>
<p class='comment'></p>
<pre class='statement'>Definition Cardan_Tartaglia_formula:=fun (a1:C) (a2:C) (a3:C) (n:nat) =>
let s:=-a1/3 in
let p:=a2+2*s*a1+3*Cpow s 2 in
let q:=a3+a2*s+a1*Cpow s 2+Cpow s 3 in
let Delta:=(Cpow (q/2) 2)+(Cpow (p/3) 3) in
let alpha : C :=if(Ceq_dec p 0) then (RtoC 0) else (cubicroot (-(q/2)+Csqrt Delta)) in
let beta:=if(Ceq_dec p 0) then -cubicroot q else -(p/3)/alpha in
s+(alpha*Cpow CJ n+beta*Cpow CJ (n+n)).
Theorem Cardan_Tartaglia : forall a1 a2 a3 :C,
let u1:=(Cardan_Tartaglia_formula a1 a2 a3 0) in
let u2:=(Cardan_Tartaglia_formula a1 a2 a3 1) in
let u3:=(Cardan_Tartaglia_formula a1 a2 a3 2) in
forall u:C, (u-u1)*(u-u2)*(u-u3)=Cpow u 3+a1*Cpow u 2+a2*u+a3.
</pre>
<p class='repro'>Reproducibility: Good (CI)</p>
<p class='axioms'>Constructive: no</p>
<p class='axioms'>Axioms used:</p>
<ul class='axioms'>
<li>ClassicalDedekindReals.sig_not_dec</li>
<li>ClassicalDedekindReals.sig_forall_dec</li>
<li>functional_extensionality_dep</li>
<li>classic</li>
</ul>
<p class='existing'>Formalized in: Coq, HOL Light, Isabelle, Lean, Metamath, Mizar</p></div>
<h3 id='38' class='formalized'><a href='http://www.cs.ru.nl/~freek/100/#38'>38. Arithmetic Mean/Geometric Mean</a></h3>
<div>
<p class='author'><strong>Jean-Marie Madiot</strong>
(in <a href="https://github.com/coq-community/coq-100-theorems/blob/master/mean.v">coq-community/coq-100-theorems</a>):
</p>
<p class='comment'>using forward-backward induction</p>
<pre class='statement'>Theorem geometric_arithmetic_mean (a : nat -> R) (n : nat) :
n <> O ->
(forall i, (i < n)%nat -> 0 <= a i) ->
prod n a <= (sum n a / INR n) ^ n
/\
(prod n a = (sum n a / INR n) ^ n -> forall i, (i < n)%nat -> a i = a O).
</pre>
<p class='repro'>Reproducibility: Good (CI)</p>
<p class='axioms'>Constructive: no</p>
<p class='axioms'>Axioms used:</p>
<ul class='axioms'>
<li>ClassicalDedekindReals.sig_not_dec</li>
<li>ClassicalDedekindReals.sig_forall_dec</li>
<li>functional_extensionality_dep</li>
</ul>
<p class='existing'>Formalized in: ACL2, Coq, HOL Light, Isabelle, Lean, Metamath, Mizar, ProofPower</p></div>
<h3 id='39' class='notformalizedyet'><a href='http://www.cs.ru.nl/~freek/100/#39'>39. Solutions to Pell’s Equation</a></h3>
<div>
<p class='existing'>Formalized in: HOL Light, Isabelle, Lean, Metamath, Mizar</p></div>
<h3 id='40' class='notformalizedyet'><a href='http://www.cs.ru.nl/~freek/100/#40'>40. Minkowski’s Fundamental Theorem</a></h3>
<div>
<p class='existing'>Formalized in: HOL Light, Isabelle, ProofPower</p></div>
<h3 id='41' class='formalized'><a href='http://www.cs.ru.nl/~freek/100/#41'>41. Puiseux’s Theorem</a></h3>
<div>
<p class='author'><strong>Daniel de Rauglaudre</strong>
(in <a href="https://github.com/roglo/puiseuxth/blob/master/coq/Puiseux.v">https://github.com/roglo/puiseuxth/blob/master/coq/Puiseux.v</a>):
</p>
<p class='comment'></p>
<pre class='statement'>Theorem puiseux_series_algeb_closed : ∀ (α : Type) (R : ring α) (K : field R),
algeb_closed_field K
→ ∀ pol : polynomial (puiseux_series α),
degree (ps_zerop K) pol ≥ 1
→ ∃ s : puiseux_series α, (ps_pol_apply pol s = 0)%ps.
</pre>
<p class='repro'>Reproducibility: as of December 2022, build success with Coq 8.16</p>
<p class='axioms'>Constructive: no</p>
<p class='axioms'>Axioms used:</p>
<ul class='axioms'>
<li>Puiseux_series.LPO (equivalent to sig_forall_dec)</li>
</ul>
<p class='existing'>Formalized in: Coq, Isabelle</p></div>
<h3 id='42' class='formalized'><a href='http://www.cs.ru.nl/~freek/100/#42'>42. Sum of the Reciprocals of the Triangular Numbers</a></h3>
<div>
<p class='author'><strong>Coqtail</strong>
(in <a href="https://github.com/coq-community/coqtail-math/blob/master/Reals/Triangular.v">coq-community/coqtail-math</a>):
</p>
<p class='comment'></p>
<pre class='statement'>Lemma sum_reciprocal_triangular : Rser_cv (fun n => / triangle (S n)) 2.
</pre>
<p class='repro'>Reproducibility: Good (CI)</p>
<p class='axioms'>Constructive: no</p>
<p class='axioms'>Axioms used:</p>
<ul class='axioms'>
<li>ClassicalDedekindReals.sig_forall_dec</li>
<li>functional_extensionality_dep</li>
</ul>
<p class='existing'>Formalized in: Coq (constructive), HOL Light, Isabelle, Lean, Metamath, Mizar, ProofPower</p></div>
<h3 id='43' class='notformalizedyet'><a href='http://www.cs.ru.nl/~freek/100/#43'>43. The Isoperimetric Theorem</a></h3>
<div>
<p class='existing'>Formalized in: (none)</p></div>
<h3 id='44' class='formalized'><a href='http://www.cs.ru.nl/~freek/100/#44'>44. The Binomial Theorem</a></h3>
<div>
<p class='author'><strong>The Coq development team</strong>
(in <a href="https://coq.inria.fr/library/Coq.Reals.Binomial.html">coq's standard library</a>):
</p>
<p class='comment'>For the non-constructive type R</p>
<pre class='statement'>Lemma binomial :
forall (x y:R) (n:nat),
(x + y) ^ n = sum_f_R0 (fun i:nat => C n i * x ^ i * y ^ (n - i)) n.
</pre>
<p class='repro'>Reproducibility: Good (CI)</p>
<p class='axioms'>Constructive: no</p>
<p class='axioms'>Axioms used:</p>
<ul class='axioms'>
<li>ClassicalDedekindReals.sig_forall_dec</li>
<li>functional_extensionality_dep</li>
</ul>
<p class='author'><strong>Laurent Thery & Jose C. Almeida</strong>
(in <a href="https://github.com/coq-contribs/rsa/blob/master/Binomials.v">coq-contribs/rsa</a>):
</p>
<p class='comment'>For the type nat</p>
<pre class='statement'>Theorem exp_Pascal :
forall a b n : nat,
power (a + b) n =
sum_nm n 0 (fun k : nat => binomial n k * (power a (n - k) * power b k)).
</pre>
<p class='repro'>Reproducibility: last checked December 2022 with Coq 8.16</p>
<p class='axioms'>Constructive: yes</p>
<p class='axioms'>Axioms used: (none)</p>
<p class='author'><strong>Jean-Marie Madiot</strong>
(in <a href="https://github.com/coq-community/coqtail-math/blob/master/Hierarchy/Commutative_ring_binomial.v#L271">coq-community/coqtail-math</a>):
</p>
<p class='comment'>For any commutative ring X.</p>
<pre class='statement'>Definition newton_sum n a b : X :=
CRsum (fun k => (Nbinomial n k) ** (a ^ k) * (b ^ (n - k))) n.
Theorem Newton : forall n a b, (a + b) ^ n == newton_sum n a b.
</pre>
<p class='repro'>Reproducibility: Good (CI)</p>
<p class='axioms'>Constructive: yes</p>
<p class='axioms'>Axioms used: (none)</p>
<p class='existing'>Formalized in: ACL2, Coq (constructive), HOL Light, Isabelle, Lean, Metamath, Mizar, NuPRL (constructive), ProofPower</p></div>
<h3 id='45' class='notformalizedyet'><a href='http://www.cs.ru.nl/~freek/100/#45'>45. The Partition Theorem</a></h3>
<div>
<p class='existing'>Formalized in: HOL Light, Isabelle, Lean, Metamath, Mizar</p></div>
<h3 id='46' class='formalized'><a href='http://www.cs.ru.nl/~freek/100/#46'>46. The Solution of the General Quartic Equation</a></h3>
<div>
<p class='author'><strong>Frédéric Chardard</strong>
(in <a href="https://github.com/coq-community/coq-100-theorems/blob/master/cardan_ferrari.v">coq-community/coq-100-theorems</a>):
</p>
<p class='comment'>For the non-constructive type R</p>
<pre class='statement'>Theorem Ferrari_formula: forall (a:C) (b:C) (c:C) (d:C),
let s:=-a/4 in
let p:= b+3*s*a+6*Cpow s 2 in
let q:= c+2*b*s+3*a*Cpow s 2+4*Cpow s 3 in
let r:= d+c*s+b*Cpow s 2+a*Cpow s 3+Cpow s 4 in
let lambda:=Cardan_Tartaglia_formula (-p/2) (-r) (r*p/2-/8*Cpow q 2) 0 in
let A:=Csqrt(2*lambda-p) in
let cond:=(Ceq_dec (2*lambda) p) in
let B:=if cond then (RtoC 0) else (-q/(2*A)) in