-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathanalyze_delay.R
160 lines (116 loc) · 5.91 KB
/
analyze_delay.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
#setwd("C:/Users/morde/OneDrive/RWorkspace/Covid19/PNI")
if(!require(data.table)){install.packages("data.table"); library(data.table)}
if(!require(tidyverse)){install.packages("tidyverse"); library(tidyverse)}
if(!require(viridis)){install.packages("viridis"); library(viridis)}
if(!require(wesanderson)){install.packages("wesanderson"); library(wesanderson)}
if(!require(lubridate)){install.packages("lubridate"); library(lubridate)}
force_bind = function(df1, df2, df3) {
colnames(df2) = colnames(df1)
colnames(df3) = colnames(df1)
bind_rows(df1, df2, df3)
}
count.na <- function(x) sum(is.na(x))
doses.report <- function(data, plot = TRUE, pal = wes_palette("Zissou1", 5, type = "discrete")[c(3,1,5)]){
summary_vector <- c(sum(!is.na(data$D1)&is.na(data$D2)),
sum(!is.na(data$D1)&!is.na(data$D2)),
sum(is.na(data$D1)&!is.na(data$D2)))
df <- data.frame(group = c("D1 only", "D1 + D2", "D2 only"),
label = paste0(round(summary_vector/nrow(data),2)*100,"%"),
value = summary_vector)
print(paste("Total de registros:",nrow(data)))
print(paste0("Individuos registrados com apenas uma dose: ",summary_vector[1], " (",df$label[1],")"))
print(paste0("Individuos registrados com as duas doses: ", summary_vector[2], " (",df$label[2],")"))
print(paste0("Individuos registrados com apenas a segunda dose: ", summary_vector[3], " (",df$label[3],")"))
if(plot){
df <- df %>%
arrange(desc(group)) %>%
mutate(ypos = cumsum(value)- 0.5*value )
gg <- ggplot(df, aes(x="", y=value, fill=group)) +
geom_bar(stat="identity", width=1, color = "white") +
coord_polar("y", start=0) +
xlab("") + theme_void() +
scale_fill_manual("", values = (pal)) +
geom_text(aes(y = ypos, label = label), color = "black", size=3)
return(gg)
}
}
#### Load data
ini = Sys.time()
dados <- fread("dados/part-00000-6fdca81d-a8ba-4752-b407-2c1f6174c29d-c000.csv")
print("Data succesfully loaded")
estado = "SP"
dados <- dados %>% filter(estabelecimento_uf == estado)
print("Preparing data... 1")
if(estado == "SP") {
dados$doses <- factor(dados$vacina_descricao_dose, levels = unique(dados$vacina_descricao_dose), label = c("D2","D1","U1","U2","U3"))
} else {
dados$doses <- factor(dados$vacina_descricao_dose, levels = unique(dados$vacina_descricao_dose), label = c("D1","D2","U1","U2"))
}
todas_vacinas <- dados %>% select("paciente_id", "paciente_datanascimento", "vacina_categoria_codigo", "vacina_dataaplicacao", "doses",
"vacina_codigo")
todas_vacinas <- todas_vacinas %>% mutate(paciente_datanascimento = as.Date(paciente_datanascimento),
vacina_dataaplicacao = as.Date(vacina_dataaplicacao))
rm(dados);gc()
##########################
## Definir vacina aqui
#86: coronavac
#85: astrazeneca
print("Preparing data... 2")
codigo = 85
vacina <- ifelse(codigo == 86, "coronavac","astrazeneca")
minimal_interval <- ifelse(codigo == 86, 21, 84)
##########################
AZ <- todas_vacinas %>% filter(vacina_codigo == codigo) %>% select(-vacina_codigo) %>% as.data.frame()
colnames(AZ) <- c("id", "nasc", "categoria", "data","doses")
nreg <- AZ %>% select(id) %>% group_by(id) %>% count() # Contar frequencia registros_id
AZ <- AZ %>% left_join(nreg, by = "id") %>% filter(n < 3) %>% mutate(id = factor(id)) # Cortar ids com mais de 2 registros
rm(nreg);gc()
# Filter if it has more than one D1 or D2 per ID
rem <- AZ %>% group_by(id, doses, .drop = FALSE) %>% summarise(m = n()) %>% filter(m > 1)
AZ = AZ %>% filter(!(id %in% rem$id)) %>% mutate(id = droplevels(id))
rm(rem);gc()
age <- AZ %>%
filter(doses == "D1") %>% mutate(idade = floor(time_length(data - nasc, "years"))) %>%
select(id,idade)
AZ <- AZ %>% left_join(age, by = "id")
final = AZ %>% select(-nasc, -n, -categoria) %>% pivot_wider(names_from = doses, values_from = data) %>% select(-id)
final$age <- cut(final$idade, breaks = seq(0,110,10), include.lowest = T, right = F)
final$difdoses <- as.numeric(final$D2 - final$D1)
final$difbase <- as.numeric(data_base - final$D1)
print("Preparing data... ok")
##### Plotar distribuição das doses
d1 = final %>% group_by(D1) %>% summarise(n = n()) %>% drop_na()
d2 = final %>% group_by(D2) %>% summarise(n = n()) %>% drop_na()
allD <- force_bind(data.frame(cbind(d1, type = "D1")),
data.frame(cbind(d2, type = "D2")),
data.frame(cbind(d1 %>% mutate(D1 = D1 + 84), type = "D1 expected")))
pal <- wes_palette("Zissou1", 5, type = "discrete")[c(1,3,5)]
data_base <- as.Date("2021-07-09")
gdoses <- ggplot(allD, aes(x = D1, y = n, fill = type)) +
geom_bar(stat = "identity", alpha = 0.9, width = 1) +
scale_fill_manual("", values = pal) +
geom_vline(xintercept = data_base) +
theme_minimal() +
xlab("")+ ylab("") +
xlim(as.Date("2021-01-01"), as.Date("2021-11-01"))
filename = paste0(estado, "_", vacina, "_doses.png")
ggsave(filename, plot = gdoses, dpi = 300, height = 10, width = 15)
print("First plot, ok.")
#### Plotar delay
final.dif <- final %>% filter(!(age %in% c("[0,10)","[10,20)"))) %>% drop_na(age, difdoses) %>% filter(difdoses >= minimal_interval)
age_total <- final.dif %>% count(age) %>% rename(n_age = n)
final.dif %>% count(age, difdoses) %>% group_by(age) %>% summarise(x = sum(n))
cumulative <- final.dif %>% group_by(age,difdoses) %>% summarise(n = n()) %>%
group_by(age) %>% mutate(sum = cumsum(n)) %>%
left_join(age_total, by = "age") %>% mutate(sum2 = sum/n_age)
gdelay <- ggplot(cumulative, aes(x = difdoses - minimal_interval, y = sum2, color = age)) +
geom_line() +
geom_point() + theme_minimal() +
xlab("Days after minimal interval") + ylab("Frequency") +
xlim(0,30) +
geom_vline(xintercept = c(7,14,21))
filename = paste0(estado, "_", vacina, "_delay.png")
ggsave(filename, plot = gdelay, dpi = 300, height = 10, width = 15)
print("Second plot, ok.")
fin = Sys.time()
fin - ini