-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmain.py
242 lines (195 loc) · 11.3 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
import torch
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP
import torch.multiprocessing as mp
import os
import argparse
import numpy as np
from modules.tokenizers import Build_Tokenizer
from modules.dataloaders import R2DataLoader
from modules.metrics import compute_scores
from modules.optimizers import build_optimizer, build_lr_scheduler
from modules.trainer import Trainer
from modules.loss import compute_loss
from modules.text_extractor import create_text_extractor
from models.r2gen import VQA_model
import warnings
warnings.filterwarnings("ignore")
import random
import pandas as pd
os.environ["TOKENIZERS_PARALLELISM"] = "false"
def parse_agrs():
parser = argparse.ArgumentParser()
# Data input settings
parser.add_argument('--image_dir', type=str, default='./dataset/WSI_features', help='the path to the directory containing the encoded wsi patches.')
parser.add_argument('--ann_path', type=str, default='./dataset/WSI_captions', help='the path to the directory containing the data.')
parser.add_argument('--split_path', type=str, default='./dataset/splits_0.csv', help='the path to the directory containing the train/val/test splits.')
# Data loader settings
parser.add_argument('--dataset_name', type=str, default='BRCA', choices=['BRCA',], help='the dataset to be used.')
parser.add_argument('--max_fea_length', type=int, default=10000, help='the maximum sequence length of the patch embeddings.')
parser.add_argument('--max_seq_length', type=int, default=60, help='the maximum sequence length of the reports.')
parser.add_argument('--threshold', type=int, default=1, help='the cut off frequency for the words.')
parser.add_argument('--num_workers', type=int, default=2, help='the number of workers for dataloader.')
parser.add_argument('--batch_size', type=int, default=1, help='the number of samples for a batch.')
# Model settings (for text extractor)
parser.add_argument('--text_extractor', type=str, default='scratch', choices=['bioclinicalbert','pubmedbert','scratch'], help='the text extractor to be used.')
# Model settings (for Transformer)
parser.add_argument('--d_model', type=int, default=512, help='the dimension of Transformer.')
parser.add_argument('--d_ff', type=int, default=512, help='the dimension of FFN.')
parser.add_argument('--d_vf', type=int, default=1024, help='the dimension of the patch features.')
parser.add_argument('--num_heads', type=int, default=4, help='the number of heads in Transformer.')
parser.add_argument('--num_layers', type=int, default=3, help='the number of layers of Transformer.')
parser.add_argument('--dropout', type=float, default=0.1, help='the dropout rate of Transformer.')
parser.add_argument('--logit_layers', type=int, default=1, help='the number of the logit layer.')
parser.add_argument('--bos_idx', type=int, default=1243, help='the index of <bos>.')
parser.add_argument('--eos_idx', type=int, default=0, help='the index of <eos>.')
parser.add_argument('--pad_idx', type=int, default=0, help='the index of <pad>.')
parser.add_argument('--use_bn', type=int, default=0, help='whether to use batch normalization.')
parser.add_argument('--drop_prob_lm', type=float, default=0.5, help='the dropout rate of the output layer.')
parser.add_argument('--n_classes', type=int, default=2, help='how many classes to predict')
# Sample related
parser.add_argument('--sample_method', type=str, default='beam_search', help='the sample methods to sample a report.')
parser.add_argument('--beam_size', type=int, default=3, help='the beam size when beam searching.')
parser.add_argument('--temperature', type=float, default=1.0, help='the temperature when sampling.')
parser.add_argument('--sample_n', type=int, default=1, help='the sample number per image.')
parser.add_argument('--group_size', type=int, default=1, help='the group size.')
parser.add_argument('--output_logsoftmax', type=int, default=1, help='whether to output the probabilities.')
parser.add_argument('--decoding_constraint', type=int, default=1, help='whether decoding constraint.')
parser.add_argument('--suppress_UNK', type=int, default=0, help='suppress UNK tokens in the decoding.')
parser.add_argument('--block_trigrams', type=int, default=1, help='whether to use block trigrams.')
# Trainer settings
parser.add_argument('--n_gpu', type=str, default='0', help='the gpus to be used.')
parser.add_argument('--epochs', type=int, default=200, help='the number of training epochs.')
parser.add_argument('--epochs_val', type=int, default=5, help='interval between eval epochs')
parser.add_argument('--start_val', type=int, default=10, help='start eval epochs')
parser.add_argument('--save_dir', type=str, default='results/BRCA', help='the patch to save the models.')
parser.add_argument('--record_dir', type=str, default='records/', help='the patch to save the results of experiments')
parser.add_argument('--save_period', type=int, default=1, help='the saving period.')
parser.add_argument('--monitor_mode', type=str, default='max', choices=['min', 'max'], help='whether to max or min the metric.')
parser.add_argument('--monitor_metric', type=str, default='BLEU_4', help='the metric to be monitored.')
parser.add_argument('--early_stop', type=int, default=20, help='the patience of training.')
# Optimization
parser.add_argument('--optim', type=str, default='Adam', help='the type of the optimizer.')
parser.add_argument('--lr_ed', type=float, default=1e-4, help='the learning rate for the remaining parameters.')
parser.add_argument('--weight_decay', type=float, default=5e-5, help='the weight decay.')
parser.add_argument('--amsgrad', type=bool, default=True, help='.')
# Learning Rate Scheduler
parser.add_argument('--lr_scheduler', type=str, default='StepLR', help='the type of the learning rate scheduler.')
parser.add_argument('--step_size', type=int, default=50, help='the step size of the learning rate scheduler.')
parser.add_argument('--gamma', type=float, default=0.1, help='the gamma of the learning rate scheduler.')
# debug
parser.add_argument("--checkpoint_dir", type=str, default='./')
parser.add_argument("--mode", type=str, default='Train')
parser.add_argument("--debug", type=str, default='False')
parser.add_argument("--local_rank", type=int, default=-1)
# Baselines (encoder-decoder)
parser.add_argument("--caption_model", type=str, default='False')
# Others
parser.add_argument('--seed', type=int, default=2024, help='.')
parser.add_argument('--resume', type=str, help='whether to resume the training from existing checkpoints.')
args = parser.parse_args()
for arg in vars(args):
if vars(args)[arg] == 'True':
vars(args)[arg] = True
elif vars(args)[arg] == 'False':
vars(args)[arg] = False
return args
def setup(rank, world_size):
#os.environ['MASTER_ADDR'] = '127.0.0.110'
os.environ['MASTER_ADDR'] = 'localhost'
os.environ['MASTER_PORT'] = '30000'
# initialize the process group
dist.init_process_group("nccl", rank=rank, world_size=world_size)
def init_seeds(seed=0, cuda_deterministic=True):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
# Speed-reproducibility tradeoff https://pytorch.org/docs/stable/notes/randomness.html
if cuda_deterministic: # slower, more reproducible
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
else: # faster, less reproducible
torch.backends.cudnn.deterministic = False
torch.backends.cudnn.benchmark = True
def main(local_rank, world_size):
args = parse_agrs()
# scaling learning rate
args.lr_ed *= world_size
setup(local_rank, world_size)
if not args.debug:
torch.cuda.set_device(local_rank)
# fix random seeds
init_seeds(args.seed+local_rank)
# create tokenizer & text_extractor
tokenizer = Build_Tokenizer(args)
# create data loader
train_dataloader = R2DataLoader(args, tokenizer, split='train', shuffle=False)
val_dataloader = R2DataLoader(args, tokenizer, split='val', shuffle=False)
test_dataloader = R2DataLoader(args, tokenizer, split='test', shuffle=False)
#val_dataloader = R2DataLoader(args, tokenizer, split='train', shuffle=False)
#test_dataloader = R2DataLoader(args, tokenizer, split='train', shuffle=False)
#text_extractor
text_extractor = create_text_extractor(model_name=args.text_extractor, override_image_size=None)
ckpt = os.path.join('./src',args.text_extractor+'.pt')
def clean_state_dict_ctranspath(state_dict):
new_state_dict = {}
for k, v in state_dict.items():
if 'attn_mask' in k:
continue
new_state_dict[k.replace('module.', '')] = v
return new_state_dict
if os.path.exists(ckpt):
state_dict = torch.load(ckpt, map_location='cpu')['state_dict']
state_dict = clean_state_dict_ctranspath(state_dict)
missing_keys, _ = text_extractor.load_state_dict(state_dict, strict=False)
assert not missing_keys
#assert pd.Series(missing_keys).str.contains('attn_mask').all() # only modules with attn_mask are not loaded
print(f'Checkpoint {ckpt} loaded successfully for text extraction')
else:
if args.text_extractor == 'scratch':
print('text extractor trained from scratch')
else:
print(f'Cannot find model checkpoint {ckpt}')
return 1
# build model architecture
model = VQA_model(args, tokenizer,text_extractor).to(local_rank)
if args.mode == 'Test':
resume_path = os.path.join(args.checkpoint_dir, 'model_best.pth')
print("Loading checkpoint: {} ...".format(resume_path))
print('saved at epoch {}'.format(torch.load(resume_path)['epoch']))
checkpoint = torch.load(resume_path)['state_dict']
model_dict = model.state_dict()
state_dict = {k:v for k,v in checkpoint.items()}
model_dict.update(state_dict)
model.load_state_dict(model_dict)
model = DDP(model, device_ids=[local_rank], output_device=local_rank, find_unused_parameters=True)
# build optimizer, learning rate scheduler. set after DDP.
optimizer = build_optimizer(args, model)
lr_scheduler = build_lr_scheduler(args, optimizer)
# get function handles of loss and metrics
criterion = compute_loss
metrics = compute_scores
# build trainer and start to train
trainer = Trainer(model, criterion, metrics, optimizer, args, lr_scheduler, train_dataloader, val_dataloader, test_dataloader)
checkpoint_dir = args.save_dir
if not os.path.exists(checkpoint_dir):
if local_rank == 0:
os.makedirs(checkpoint_dir)
if not args.mode == 'Test':
trainer.train(local_rank)
else:
trainer.test(local_rank)
if __name__ == '__main__':
args = parse_agrs()
os.environ['CUDA_VISIBLE_DEVICES'] = args.n_gpu
#os.environ['CUDA_VISIBLE_DEVICES'] = '5,6'
n_gpus = torch.cuda.device_count()
world_size = n_gpus
if args.debug:
assert n_gpus==1
main(0, 1)
else:
mp.spawn(main,
args=(world_size,),
nprocs=world_size,
join=True)