-
Notifications
You must be signed in to change notification settings - Fork 101
/
Copy pathmain_dpir_sisr.py
308 lines (243 loc) · 13.2 KB
/
main_dpir_sisr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
import os.path
import glob
import cv2
import logging
import time
import numpy as np
from datetime import datetime
from collections import OrderedDict
import hdf5storage
import torch
from utils import utils_deblur
from utils import utils_logger
from utils import utils_model
from utils import utils_pnp as pnp
from utils import utils_sisr as sr
from utils import utils_image as util
"""
Spyder (Python 3.7)
PyTorch 1.6.0
Windows 10 or Linux
Kai Zhang (cskaizhang@gmail.com)
github: https://github.com/cszn/DPIR
https://github.com/cszn/IRCNN
https://github.com/cszn/KAIR
@article{zhang2020plug,
title={Plug-and-Play Image Restoration with Deep Denoiser Prior},
author={Zhang, Kai and Li, Yawei and Zuo, Wangmeng and Zhang, Lei and Van Gool, Luc and Timofte, Radu},
journal={arXiv preprint},
year={2020}
}
% If you have any question, please feel free to contact with me.
% Kai Zhang (e-mail: cskaizhang@gmail.com; homepage: https://cszn.github.io/)
by Kai Zhang (01/August/2020)
# --------------------------------------------
|--model_zoo # model_zoo
|--drunet_color # model_name, for color images
|--drunet_gray
|--testset # testsets
|--results # results
# --------------------------------------------
How to run:
step 1: download [drunet_gray.pth, drunet_color.pth, ircnn_gray.pth, ircnn_color.pth] from https://drive.google.com/drive/folders/13kfr3qny7S2xwG9h7v95F5mkWs0OmU0D
step 2: set your own testset 'testset_name' and parameter setting such as 'noise_level_img', 'iter_num'.
step 3: 'python main_dpir_sisr.py'
"""
def main():
# ----------------------------------------
# Preparation
# ----------------------------------------
noise_level_img = 0/255.0 # set AWGN noise level for LR image, default: 0,
noise_level_model = noise_level_img # setnoise level of model, default 0
model_name = 'drunet_color' # set denoiser, | 'drunet_color' | 'ircnn_gray' | 'drunet_gray' | 'ircnn_color'
testset_name = 'srbsd68' # set test set, 'set5' | 'srbsd68'
x8 = True # default: False, x8 to boost performance
test_sf = [2] # set scale factor, default: [2, 3, 4], [2], [3], [4]
iter_num = 24 # set number of iterations, default: 24 for SISR
modelSigma1 = 49 # set sigma_1, default: 49
classical_degradation = True # set classical degradation or bicubic degradation
show_img = False # default: False
save_L = True # save LR image
save_E = True # save estimated image
save_LEH = False # save zoomed LR, E and H images
task_current = 'sr' # 'sr' for super-resolution
n_channels = 1 if 'gray' in model_name else 3 # fixed
model_zoo = 'model_zoo' # fixed
testsets = 'testsets' # fixed
results = 'results' # fixed
result_name = testset_name + '_' + task_current + '_' + model_name
model_path = os.path.join(model_zoo, model_name+'.pth')
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
torch.cuda.empty_cache()
# ----------------------------------------
# L_path, E_path, H_path
# ----------------------------------------
L_path = os.path.join(testsets, testset_name) # L_path, for Low-quality images
E_path = os.path.join(results, result_name) # E_path, for Estimated images
util.mkdir(E_path)
logger_name = result_name
utils_logger.logger_info(logger_name, log_path=os.path.join(E_path, logger_name+'.log'))
logger = logging.getLogger(logger_name)
# ----------------------------------------
# load model
# ----------------------------------------
if 'drunet' in model_name:
from models.network_unet import UNetRes as net
model = net(in_nc=n_channels+1, out_nc=n_channels, nc=[64, 128, 256, 512], nb=4, act_mode='R', downsample_mode="strideconv", upsample_mode="convtranspose")
model.load_state_dict(torch.load(model_path), strict=True)
model.eval()
for _, v in model.named_parameters():
v.requires_grad = False
model = model.to(device)
elif 'ircnn' in model_name:
from models.network_dncnn import IRCNN as net
model = net(in_nc=n_channels, out_nc=n_channels, nc=64)
model25 = torch.load(model_path)
former_idx = 0
logger.info('model_name:{}, image sigma:{:.3f}, model sigma:{:.3f}'.format(model_name, noise_level_img, noise_level_model))
logger.info('Model path: {:s}'.format(model_path))
logger.info(L_path)
L_paths = util.get_image_paths(L_path)
# --------------------------------
# load kernel
# --------------------------------
# kernels = hdf5storage.loadmat(os.path.join('kernels', 'Levin09.mat'))['kernels']
if classical_degradation:
kernels = hdf5storage.loadmat(os.path.join('kernels', 'kernels_12.mat'))['kernels']
else:
kernels = hdf5storage.loadmat(os.path.join('kernels', 'kernel_bicubicx234.mat'))['kernels']
test_results_ave = OrderedDict()
test_results_ave['psnr_sf_k'] = []
test_results_ave['psnr_y_sf_k'] = []
for sf in test_sf:
border = sf
modelSigma2 = max(sf, noise_level_model*255.)
k_num = 8 if classical_degradation else 1
for k_index in range(k_num):
logger.info('--------- sf:{:>1d} --k:{:>2d} ---------'.format(sf, k_index))
test_results = OrderedDict()
test_results['psnr'] = []
test_results['psnr_y'] = []
if not classical_degradation: # for bicubic degradation
k_index = sf-2
k = kernels[0, k_index].astype(np.float64)
util.surf(k) if show_img else None
for idx, img in enumerate(L_paths):
# --------------------------------
# (1) get img_L
# --------------------------------
img_name, ext = os.path.splitext(os.path.basename(img))
img_H = util.imread_uint(img, n_channels=n_channels)
img_H = util.modcrop(img_H, sf) # modcrop
if classical_degradation:
img_L = sr.classical_degradation(img_H, k, sf)
util.imshow(img_L) if show_img else None
img_L = util.uint2single(img_L)
else:
img_L = util.imresize_np(util.uint2single(img_H), 1/sf)
np.random.seed(seed=0) # for reproducibility
img_L += np.random.normal(0, noise_level_img, img_L.shape) # add AWGN
# --------------------------------
# (2) get rhos and sigmas
# --------------------------------
rhos, sigmas = pnp.get_rho_sigma(sigma=max(0.255/255., noise_level_model), iter_num=iter_num, modelSigma1=modelSigma1, modelSigma2=modelSigma2, w=1)
rhos, sigmas = torch.tensor(rhos).to(device), torch.tensor(sigmas).to(device)
# --------------------------------
# (3) initialize x, and pre-calculation
# --------------------------------
x = cv2.resize(img_L, (img_L.shape[1]*sf, img_L.shape[0]*sf), interpolation=cv2.INTER_CUBIC)
if np.ndim(x)==2:
x = x[..., None]
if classical_degradation:
x = sr.shift_pixel(x, sf)
x = util.single2tensor4(x).to(device)
img_L_tensor, k_tensor = util.single2tensor4(img_L), util.single2tensor4(np.expand_dims(k, 2))
[k_tensor, img_L_tensor] = util.todevice([k_tensor, img_L_tensor], device)
FB, FBC, F2B, FBFy = sr.pre_calculate(img_L_tensor, k_tensor, sf)
# --------------------------------
# (4) main iterations
# --------------------------------
for i in range(iter_num):
# --------------------------------
# step 1, FFT
# --------------------------------
tau = rhos[i].float().repeat(1, 1, 1, 1)
x = sr.data_solution(x.float(), FB, FBC, F2B, FBFy, tau, sf)
if 'ircnn' in model_name:
current_idx = np.int(np.ceil(sigmas[i].cpu().numpy()*255./2.)-1)
if current_idx != former_idx:
model.load_state_dict(model25[str(current_idx)], strict=True)
model.eval()
for _, v in model.named_parameters():
v.requires_grad = False
model = model.to(device)
former_idx = current_idx
# --------------------------------
# step 2, denoiser
# --------------------------------
if x8:
x = util.augment_img_tensor4(x, i % 8)
if 'drunet' in model_name:
x = torch.cat((x, sigmas[i].float().repeat(1, 1, x.shape[2], x.shape[3])), dim=1)
x = utils_model.test_mode(model, x, mode=2, refield=32, min_size=256, modulo=16)
elif 'ircnn' in model_name:
x = model(x)
if x8:
if i % 8 == 3 or i % 8 == 5:
x = util.augment_img_tensor4(x, 8 - i % 8)
else:
x = util.augment_img_tensor4(x, i % 8)
# --------------------------------
# (3) img_E
# --------------------------------
img_E = util.tensor2uint(x)
if save_E:
util.imsave(img_E, os.path.join(E_path, img_name+'_x'+str(sf)+'_k'+str(k_index)+'_'+model_name+'.png'))
if n_channels == 1:
img_H = img_H.squeeze()
# --------------------------------
# (4) img_LEH
# --------------------------------
img_L = util.single2uint(img_L).squeeze()
if save_LEH:
k_v = k/np.max(k)*1.0
if n_channels==1:
k_v = util.single2uint(k_v)
else:
k_v = util.single2uint(np.tile(k_v[..., np.newaxis], [1, 1, n_channels]))
k_v = cv2.resize(k_v, (3*k_v.shape[1], 3*k_v.shape[0]), interpolation=cv2.INTER_NEAREST)
img_I = cv2.resize(img_L, (sf*img_L.shape[1], sf*img_L.shape[0]), interpolation=cv2.INTER_NEAREST)
img_I[:k_v.shape[0], -k_v.shape[1]:, ...] = k_v
img_I[:img_L.shape[0], :img_L.shape[1], ...] = img_L
util.imshow(np.concatenate([img_I, img_E, img_H], axis=1), title='LR / Recovered / Ground-truth') if show_img else None
util.imsave(np.concatenate([img_I, img_E, img_H], axis=1), os.path.join(E_path, img_name+'_x'+str(sf)+'_k'+str(k_index)+'_LEH.png'))
if save_L:
util.imsave(img_L, os.path.join(E_path, img_name+'_x'+str(sf)+'_k'+str(k_index)+'_LR.png'))
psnr = util.calculate_psnr(img_E, img_H, border=border)
test_results['psnr'].append(psnr)
logger.info('{:->4d}--> {:>10s} -- sf:{:>1d} --k:{:>2d} PSNR: {:.2f}dB'.format(idx+1, img_name+ext, sf, k_index, psnr))
if n_channels == 3:
img_E_y = util.rgb2ycbcr(img_E, only_y=True)
img_H_y = util.rgb2ycbcr(img_H, only_y=True)
psnr_y = util.calculate_psnr(img_E_y, img_H_y, border=border)
test_results['psnr_y'].append(psnr_y)
# --------------------------------
# Average PSNR for all kernels
# --------------------------------
ave_psnr_k = sum(test_results['psnr']) / len(test_results['psnr'])
logger.info('------> Average PSNR(RGB) of ({}) scale factor: ({}), kernel: ({}) sigma: ({:.2f}): {:.2f} dB'.format(testset_name, sf, k_index, noise_level_model, ave_psnr_k))
test_results_ave['psnr_sf_k'].append(ave_psnr_k)
if n_channels == 3: # RGB image
ave_psnr_y_k = sum(test_results['psnr_y']) / len(test_results['psnr_y'])
logger.info('------> Average PSNR(Y) of ({}) scale factor: ({}), kernel: ({}) sigma: ({:.2f}): {:.2f} dB'.format(testset_name, sf, k_index, noise_level_model, ave_psnr_y_k))
test_results_ave['psnr_y_sf_k'].append(ave_psnr_y_k)
# ---------------------------------------
# Average PSNR for all sf and kernels
# ---------------------------------------
ave_psnr_sf_k = sum(test_results_ave['psnr_sf_k']) / len(test_results_ave['psnr_sf_k'])
logger.info('------> Average PSNR of ({}) {:.2f} dB'.format(testset_name, ave_psnr_sf_k))
if n_channels == 3:
ave_psnr_y_sf_k = sum(test_results_ave['psnr_y_sf_k']) / len(test_results_ave['psnr_y_sf_k'])
logger.info('------> Average PSNR of ({}) {:.2f} dB'.format(testset_name, ave_psnr_y_sf_k))
if __name__ == '__main__':
main()