|
248 | 248 | " ids = list(ids.flatten())\n",
|
249 | 249 | " \n",
|
250 | 250 | " regression = LinearRegression()\n",
|
251 |
| - "# regression = ElasticNet(alpha=1e-3)\n", |
252 | 251 | "\n",
|
253 | 252 | " X_subtrain = X_train[ids]\n",
|
254 | 253 | " y_subtrain = y_train[ids]\n",
|
255 | 254 | " \n",
|
256 | 255 | " def transform(X):\n",
|
257 | 256 | " grade = np.array([avg_price_by_grade[g - 3] for g in X['grade']])\n",
|
258 | 257 | " \n",
|
259 |
| - "# return np.vstack([\n", |
260 |
| - "# np.log(X['sqft_basement'] + 1),\n", |
261 |
| - "# np.log(X['sqft_above'] + 1),\n", |
262 |
| - "# np.log(grade + 1),\n", |
263 |
| - "# np.log(grade * X['sqft_lot'] + 1),\n", |
264 |
| - "# np.log(X['waterfront'] + 1),\n", |
265 |
| - "# np.log(X['condition'] * X['sqft_living'] + 1),\n", |
266 |
| - "# (X['yr_built'] >= 2012)\n", |
267 |
| - "# ]).T \n", |
268 |
| - "\n", |
269 | 258 | " return np.vstack([\n",
|
270 | 259 | " X['sqft_basement'],\n",
|
271 | 260 | " X['sqft_above'],\n",
|
|
283 | 272 | " \n",
|
284 | 273 | " y_predict.append(y[0])\n",
|
285 | 274 | " \n",
|
286 |
| - "print((np.abs(y_test - y_predict)/y_test).mean())\n", |
287 |
| - " \n", |
288 | 275 | "with open('y_solution.csv', 'w') as out:\n",
|
289 | 276 | " print('Id,Price', file=out)\n",
|
290 | 277 | " for pair in enumerate(y_predict, 1):\n",
|
|
0 commit comments