-
Notifications
You must be signed in to change notification settings - Fork 31
/
Copy pathoffset_visualization.py
178 lines (131 loc) · 6.12 KB
/
offset_visualization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
from dcn import DeformableConv2d
import torch
import torch.nn as nn
import numpy as np
import cv2
from PIL import Image
from torchvision import transforms as T
def scale_transformation(img, scale_factor=1.0, borderValue=0):
img_h, img_w = img.shape[0:2]
cx = img_w//2
cy = img_h//2
tx = cx - scale_factor * cx
ty = cy - scale_factor * cy
# scale matrix
sm = np.float32([[scale_factor, 0, tx],
[0, scale_factor, ty]]) # [1, 0, tx], [1, 0, ty]
img = cv2.warpAffine(img, sm, (img_w, img_h), borderValue=borderValue)
return img
def rotation_transformation(img, angle=3., borderValue=0):
img_h, img_w = img.shape[0:2]
rm = cv2.getRotationMatrix2D((img_w // 2, img_h // 2), angle=angle, scale=1.0) # rotation matrix
img = cv2.warpAffine(img, rm, (img_w, img_h), flags=cv2.INTER_LINEAR, borderValue=borderValue)
return img
def random_rotation(img, scale_factor=1.0, borderValue=0):
img_h, img_w = img.shape[0:2]
cx = img_w//2
cy = img_h//2
tx = cx - scale_factor * cx
ty = cy - scale_factor * cy
# scale matrix
sm = np.float32([[scale_factor, 0, tx],
[0, scale_factor, ty]]) # [1, 0, tx], [1, 0, ty]
img = cv2.warpAffine(img, sm, (img_w, img_h), borderValue=borderValue)
return img
def plot_offsets(img, save_output, roi_x, roi_y):
cv2.circle(img, center=(roi_x, roi_y), color=(0, 255, 0), radius=1, thickness=-1)
input_img_h, input_img_w = img.shape[:2]
for offsets in save_output.outputs:
offset_tensor_h, offset_tensor_w = offsets.shape[2:]
resize_factor_h, resize_factor_w = input_img_h/offset_tensor_h, input_img_w/offset_tensor_w
offsets_y = offsets[:, ::2]
offsets_x = offsets[:, 1::2]
grid_y = np.arange(0, offset_tensor_h)
grid_x = np.arange(0, offset_tensor_w)
grid_x, grid_y = np.meshgrid(grid_x, grid_y)
sampling_y = grid_y + offsets_y.detach().cpu().numpy()
sampling_x = grid_x + offsets_x.detach().cpu().numpy()
sampling_y *= resize_factor_h
sampling_x *= resize_factor_w
sampling_y = sampling_y[0] # remove batch axis
sampling_x = sampling_x[0] # remove batch axis
sampling_y = sampling_y.transpose(1, 2, 0) # c, h, w -> h, w, c
sampling_x = sampling_x.transpose(1, 2, 0) # c, h, w -> h, w, c
sampling_y = np.clip(sampling_y, 0, input_img_h)
sampling_x = np.clip(sampling_x, 0, input_img_w)
sampling_y = cv2.resize(sampling_y, dsize=None, fx=resize_factor_w, fy=resize_factor_h)
sampling_x = cv2.resize(sampling_x, dsize=None, fx=resize_factor_w, fy=resize_factor_h)
sampling_y = sampling_y[roi_y, roi_x]
sampling_x = sampling_x[roi_y, roi_x]
for y, x in zip(sampling_y, sampling_x):
y = round(y)
x = round(x)
cv2.circle(img, center=(x, y), color=(0, 0, 255), radius=1, thickness=-1)
class MNISTClassifier(nn.Module):
def __init__(self,
deformable=False):
super(MNISTClassifier, self).__init__()
self.conv1 = nn.Conv2d(1, 32, kernel_size=3, stride=1, padding=1, bias=True)
self.conv2 = nn.Conv2d(32, 32, kernel_size=3, stride=1, padding=1, bias=True)
self.conv3 = nn.Conv2d(32, 32, kernel_size=3, stride=1, padding=1, bias=True)
conv = nn.Conv2d if deformable==False else DeformableConv2d
self.conv4 = conv(32, 32, kernel_size=3, stride=1, padding=1, bias=True)
self.conv5 = conv(32, 32, kernel_size=3, stride=1, padding=1, bias=True)
self.pool = nn.MaxPool2d(2)
self.gap = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(32, 10)
def forward(self, x):
x = torch.relu(self.conv1(x))
x = self.pool(x) # [14, 14]
x = torch.relu(self.conv2(x))
x = self.pool(x) # [7, 7]
x = torch.relu(self.conv3(x))
x = torch.relu(self.conv4(x))
x = torch.relu(self.conv5(x))
x = self.gap(x)
x = x.flatten(start_dim=1)
x = self.fc(x)
return x
class SaveOutput:
def __init__(self):
self.outputs = []
def __call__(self, module, module_in, module_out):
self.outputs.append(module_out)
def clear(self):
self.outputs = []
device = 'cuda' if torch.cuda.is_available() else 'cpu'
model = MNISTClassifier(deformable=True)
model.load_state_dict(torch.load("example_model_state_dict.pth"))
model = model.to(device)
save_output = SaveOutput()
for name, layer in model.named_modules():
if "offset_conv" in name and isinstance(layer, nn.Conv2d):
layer.register_forward_hook(save_output)
scale_factors = np.arange(0.5, 1.5, 0.01)
scale_factors = np.concatenate([scale_factors, scale_factors[::-1]])
rotation_factors = np.arange(-15, 15, 1)
rotation_factors = np.concatenate([rotation_factors, rotation_factors[::-1]])
scale_idx_factor = 0
rotation_idx_factor = 0
with torch.no_grad():
while True:
image = cv2.imread("example.png", flags=cv2.IMREAD_GRAYSCALE)
input_img_h, input_img_w = image.shape
image = scale_transformation(image, scale_factor=scale_factors[scale_idx_factor])
image = rotation_transformation(image, angle=rotation_factors[rotation_idx_factor])
scale_idx_factor = (scale_idx_factor + 1) % len(scale_factors)
rotation_idx_factor = (rotation_idx_factor + 1) % len(rotation_factors)
image_tensor = torch.from_numpy(image)/255.
image_tensor = image_tensor.view(1, 1, input_img_h, input_img_w)
image_tensor = T.Normalize((0.1307,), (0.3081,))(image_tensor)
image_tensor = image_tensor.to(device)
out = model(image_tensor)
image = np.repeat(image[..., np.newaxis], 3, axis=-1)
roi_y, roi_x = input_img_h//2, input_img_w//2
plot_offsets(image, save_output, roi_x=roi_x, roi_y=roi_y)
save_output.clear()
image = cv2.resize(image, dsize=(224, 224))
cv2.imshow("image", image)
key = cv2.waitKey(30)
if key == 27:
break