-
Notifications
You must be signed in to change notification settings - Fork 60
/
Copy pathmodel.py
executable file
·283 lines (217 loc) · 10.2 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
import torch
import torch.nn as nn
from torch.nn import functional as F
import numpy as np
from utils.distributions import Categorical, DiagGaussian
from utils.model import get_grid, ChannelPool, Flatten, NNBase
import envs.utils.depth_utils as du
class Goal_Oriented_Semantic_Policy(NNBase):
def __init__(self, input_shape, recurrent=False, hidden_size=512,
num_sem_categories=16):
super(Goal_Oriented_Semantic_Policy, self).__init__(
recurrent, hidden_size, hidden_size)
out_size = int(input_shape[1] / 16.) * int(input_shape[2] / 16.)
self.main = nn.Sequential(
nn.MaxPool2d(2),
nn.Conv2d(num_sem_categories + 8, 32, 3, stride=1, padding=1),
nn.ReLU(),
nn.MaxPool2d(2),
nn.Conv2d(32, 64, 3, stride=1, padding=1),
nn.ReLU(),
nn.MaxPool2d(2),
nn.Conv2d(64, 128, 3, stride=1, padding=1),
nn.ReLU(),
nn.MaxPool2d(2),
nn.Conv2d(128, 64, 3, stride=1, padding=1),
nn.ReLU(),
nn.Conv2d(64, 32, 3, stride=1, padding=1),
nn.ReLU(),
Flatten()
)
self.linear1 = nn.Linear(out_size * 32 + 8 * 2, hidden_size)
self.linear2 = nn.Linear(hidden_size, 256)
self.critic_linear = nn.Linear(256, 1)
self.orientation_emb = nn.Embedding(72, 8)
self.goal_emb = nn.Embedding(num_sem_categories, 8)
self.train()
def forward(self, inputs, rnn_hxs, masks, extras):
x = self.main(inputs)
orientation_emb = self.orientation_emb(extras[:, 0])
goal_emb = self.goal_emb(extras[:, 1])
x = torch.cat((x, orientation_emb, goal_emb), 1)
x = nn.ReLU()(self.linear1(x))
if self.is_recurrent:
x, rnn_hxs = self._forward_gru(x, rnn_hxs, masks)
x = nn.ReLU()(self.linear2(x))
return self.critic_linear(x).squeeze(-1), x, rnn_hxs
# https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail/blob/master/a2c_ppo_acktr/model.py#L15
class RL_Policy(nn.Module):
def __init__(self, obs_shape, action_space, model_type=0,
base_kwargs=None):
super(RL_Policy, self).__init__()
if base_kwargs is None:
base_kwargs = {}
if model_type == 1:
self.network = Goal_Oriented_Semantic_Policy(
obs_shape, **base_kwargs)
else:
raise NotImplementedError
if action_space.__class__.__name__ == "Discrete":
num_outputs = action_space.n
self.dist = Categorical(self.network.output_size, num_outputs)
elif action_space.__class__.__name__ == "Box":
num_outputs = action_space.shape[0]
self.dist = DiagGaussian(self.network.output_size, num_outputs)
else:
raise NotImplementedError
self.model_type = model_type
@property
def is_recurrent(self):
return self.network.is_recurrent
@property
def rec_state_size(self):
"""Size of rnn_hx."""
return self.network.rec_state_size
def forward(self, inputs, rnn_hxs, masks, extras):
if extras is None:
return self.network(inputs, rnn_hxs, masks)
else:
return self.network(inputs, rnn_hxs, masks, extras)
def act(self, inputs, rnn_hxs, masks, extras=None, deterministic=False):
value, actor_features, rnn_hxs = self(inputs, rnn_hxs, masks, extras)
dist = self.dist(actor_features)
if deterministic:
action = dist.mode()
else:
action = dist.sample()
action_log_probs = dist.log_probs(action)
return value, action, action_log_probs, rnn_hxs
def get_value(self, inputs, rnn_hxs, masks, extras=None):
value, _, _ = self(inputs, rnn_hxs, masks, extras)
return value
def evaluate_actions(self, inputs, rnn_hxs, masks, action, extras=None):
value, actor_features, rnn_hxs = self(inputs, rnn_hxs, masks, extras)
dist = self.dist(actor_features)
action_log_probs = dist.log_probs(action)
dist_entropy = dist.entropy().mean()
return value, action_log_probs, dist_entropy, rnn_hxs
class Semantic_Mapping(nn.Module):
"""
Semantic_Mapping
"""
def __init__(self, args):
super(Semantic_Mapping, self).__init__()
self.device = args.device
self.screen_h = args.frame_height
self.screen_w = args.frame_width
self.resolution = args.map_resolution
self.z_resolution = args.map_resolution
self.map_size_cm = args.map_size_cm // args.global_downscaling
self.n_channels = 3
self.vision_range = args.vision_range
self.dropout = 0.5
self.fov = args.hfov
self.du_scale = args.du_scale
self.cat_pred_threshold = args.cat_pred_threshold
self.exp_pred_threshold = args.exp_pred_threshold
self.map_pred_threshold = args.map_pred_threshold
self.num_sem_categories = args.num_sem_categories
self.max_height = int(360 / self.z_resolution)
self.min_height = int(-40 / self.z_resolution)
self.agent_height = args.camera_height * 100.
self.shift_loc = [self.vision_range *
self.resolution // 2, 0, np.pi / 2.0]
self.camera_matrix = du.get_camera_matrix(
self.screen_w, self.screen_h, self.fov)
self.pool = ChannelPool(1)
vr = self.vision_range
self.init_grid = torch.zeros(
args.num_processes, 1 + self.num_sem_categories, vr, vr,
self.max_height - self.min_height
).float().to(self.device)
self.feat = torch.ones(
args.num_processes, 1 + self.num_sem_categories,
self.screen_h // self.du_scale * self.screen_w // self.du_scale
).float().to(self.device)
def forward(self, obs, pose_obs, maps_last, poses_last):
bs, c, h, w = obs.size()
depth = obs[:, 3, :, :]
point_cloud_t = du.get_point_cloud_from_z_t(
depth, self.camera_matrix, self.device, scale=self.du_scale)
agent_view_t = du.transform_camera_view_t(
point_cloud_t, self.agent_height, 0, self.device)
agent_view_centered_t = du.transform_pose_t(
agent_view_t, self.shift_loc, self.device)
max_h = self.max_height
min_h = self.min_height
xy_resolution = self.resolution
z_resolution = self.z_resolution
vision_range = self.vision_range
XYZ_cm_std = agent_view_centered_t.float()
XYZ_cm_std[..., :2] = (XYZ_cm_std[..., :2] / xy_resolution)
XYZ_cm_std[..., :2] = (XYZ_cm_std[..., :2] -
vision_range // 2.) / vision_range * 2.
XYZ_cm_std[..., 2] = XYZ_cm_std[..., 2] / z_resolution
XYZ_cm_std[..., 2] = (XYZ_cm_std[..., 2] -
(max_h + min_h) // 2.) / (max_h - min_h) * 2.
self.feat[:, 1:, :] = nn.AvgPool2d(self.du_scale)(
obs[:, 4:, :, :]
).view(bs, c - 4, h // self.du_scale * w // self.du_scale)
XYZ_cm_std = XYZ_cm_std.permute(0, 3, 1, 2)
XYZ_cm_std = XYZ_cm_std.view(XYZ_cm_std.shape[0],
XYZ_cm_std.shape[1],
XYZ_cm_std.shape[2] * XYZ_cm_std.shape[3])
voxels = du.splat_feat_nd(
self.init_grid * 0., self.feat, XYZ_cm_std).transpose(2, 3)
min_z = int(25 / z_resolution - min_h)
max_z = int((self.agent_height + 1) / z_resolution - min_h)
agent_height_proj = voxels[..., min_z:max_z].sum(4)
all_height_proj = voxels.sum(4)
fp_map_pred = agent_height_proj[:, 0:1, :, :]
fp_exp_pred = all_height_proj[:, 0:1, :, :]
fp_map_pred = fp_map_pred / self.map_pred_threshold
fp_exp_pred = fp_exp_pred / self.exp_pred_threshold
fp_map_pred = torch.clamp(fp_map_pred, min=0.0, max=1.0)
fp_exp_pred = torch.clamp(fp_exp_pred, min=0.0, max=1.0)
pose_pred = poses_last
agent_view = torch.zeros(bs, c,
self.map_size_cm // self.resolution,
self.map_size_cm // self.resolution
).to(self.device)
x1 = self.map_size_cm // (self.resolution * 2) - self.vision_range // 2
x2 = x1 + self.vision_range
y1 = self.map_size_cm // (self.resolution * 2)
y2 = y1 + self.vision_range
agent_view[:, 0:1, y1:y2, x1:x2] = fp_map_pred
agent_view[:, 1:2, y1:y2, x1:x2] = fp_exp_pred
agent_view[:, 4:, y1:y2, x1:x2] = torch.clamp(
agent_height_proj[:, 1:, :, :] / self.cat_pred_threshold,
min=0.0, max=1.0)
corrected_pose = pose_obs
def get_new_pose_batch(pose, rel_pose_change):
pose[:, 1] += rel_pose_change[:, 0] * \
torch.sin(pose[:, 2] / 57.29577951308232) \
+ rel_pose_change[:, 1] * \
torch.cos(pose[:, 2] / 57.29577951308232)
pose[:, 0] += rel_pose_change[:, 0] * \
torch.cos(pose[:, 2] / 57.29577951308232) \
- rel_pose_change[:, 1] * \
torch.sin(pose[:, 2] / 57.29577951308232)
pose[:, 2] += rel_pose_change[:, 2] * 57.29577951308232
pose[:, 2] = torch.fmod(pose[:, 2] - 180.0, 360.0) + 180.0
pose[:, 2] = torch.fmod(pose[:, 2] + 180.0, 360.0) - 180.0
return pose
current_poses = get_new_pose_batch(poses_last, corrected_pose)
st_pose = current_poses.clone().detach()
st_pose[:, :2] = - (st_pose[:, :2]
* 100.0 / self.resolution
- self.map_size_cm // (self.resolution * 2)) /\
(self.map_size_cm // (self.resolution * 2))
st_pose[:, 2] = 90. - (st_pose[:, 2])
rot_mat, trans_mat = get_grid(st_pose, agent_view.size(),
self.device)
rotated = F.grid_sample(agent_view, rot_mat, align_corners=True)
translated = F.grid_sample(rotated, trans_mat, align_corners=True)
maps2 = torch.cat((maps_last.unsqueeze(1), translated.unsqueeze(1)), 1)
map_pred, _ = torch.max(maps2, 1)
return fp_map_pred, map_pred, pose_pred, current_poses