-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconfig_utils.py
49 lines (33 loc) · 1.18 KB
/
config_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
class SensorConfig(object):
description= None
update_limit = 3000 # the number of mini-batch before evaluating the model
# how to encode utterance.
# bow: add word embedding together
# rnn: RNN utterance encoder
# bi_rnn: bi_directional RNN utterance encoder
sent_type = "bi_rnn"
sent_cell_size = 300
att_size = 100
#sent_cell_size = 200
#att_size = 100
position_len = 135
max_length = 135
# Network general
cell_type = "gru" # gru or lstm
#embed_size = 150 # word embedding size
embed_size = 200
num_layer = 1 # number of context RNN layers
# Optimization parameters
op = "adam"
grad_clip = 15.0 # gradient abs max cut
init_w = 0.08 # uniform random from [-init_w, init_w]
batch_size = 5 # mini-batch size
init_lr = 0.005 # initial learning rate
lr_hold = 1 # only used by SGD
lr_decay = 0.6 # only used by SGD
keep_prob = 0.95 # drop out rate
improve_threshold = 0.996 # for early stopping
patient_increase = 2.0 # for early stopping
early_stop = True
max_epoch = 30 # max number of epoch of training
grad_noise = 0.0 # inject gradient noise?