-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmod_pcp_cso.R
229 lines (174 loc) · 5.88 KB
/
mod_pcp_cso.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
#############################
#
#
#
#
#
############################
install.packages('pblappy')
install.packages('sp')
install.packages('rgdal')
install.packages('gstat')
require(pblappy)
require(sp)
require(rgdal)
require(gstat)
require(parallel)
# read in the pcp data from the mod
setwd('~/Desktop/pcp')
all_files = list.files('.')
all_frames = lapply(all_files,read.csv)
mod_pcp_all = do.call(rbind, all_frames)
mod_pcp = mod_pcp_all[,-c(6,7,8,9,10,11,12)]
dates = paste(mod_pcp$year, mod_pcp$month, mod_pcp$day, sep = '-')
dates = as.Date(dates)
mod_pcp$dates = dates
mod_pcp$year = NULL
mod_pcp$month = NULL
mod_pcp$day = NULL
mod_order = mod_pcp[order(mod_pcp$dates),]
mod_order$sp = as.factor(mod_order$dates)
dates = mod_order$dates
pcp_days = split(mod_order, mod_order$sp)
directory = "/Users/grad/Desktop/lseg"
layer_name = "P6Beta_v3_LSegs_081516_Albers"
lseg = readOGR(dsn = directory, layer = layer_name)
lseg_day_pcp = function(pcp_days, lseg){
ids = lseg@data$FIPS_NHL
lseg@data = merge(lseg@data, pcp_days, by.x = 'FIPS_NHL', by.y = 'seg', all = TRUE)
lseg@data$sp = NULL
lseg@data$dates[is.na(lseg@data$dates)] = lseg@data$dates[1]
lseg@data$precip.in.[is.na(lseg@data$precip.in.)] = 0
lseg@data$FIPS_NHL = as.character(ids)
return(lseg)
}
lseg_pcp = lapply(pcp_days, lseg_day_pcp, lseg)
################################
# plots
lseg_plot = lseg
lseg_plot@data$dates = NULL
spplot(lseg_plot)
###############################
directory = "/Users/grad/Desktop/umces/cso/css"
layer_name = "CSS_final_jan14_clean"
cso = readOGR(dsn = directory, layer = layer_name)
### read in the land segment shapefile.
extract_pcp_mod = function(lseg, cso, pcp_unit = 'in', threshold = 0.01, write_csv = FALSE){
## prject vor to same as the input shape..
lseg <- spTransform(lseg, proj4string(cso))
### get the precip data ...
## extracts the precip value for each cso area, id?
p <- over(cso, lseg[2], layer = 3, fun = mean, na.rm = FALSE)
# Make the output data frame, all ids, one day ...
output1 = data.frame(id = cso$NPDES_ID, pcp = p$precip.in., ac = cso$ACRES )
if(pcp_unit == 'mm'){
print('currently not supported')
}
if(pcp_unit == 'in') {
output1$pcp[which(output1$pcp <= 0.01)] <- 0
}
if(write_csv == TRUE){
# here is one-days output......
write.csv(out, paste('station_pcp', 'cso_mod_pcp.csv', sep = '_'), row.names = FALSE)
}
return(output1)
}
# extraction the pcp ...
mod_pcp = pblapply(lseg_pcp, extract_pcp_mod, cso)
mod_all_pcp = do.call('rbind', mod_pcp)
write.csv(mod_all_pcp, '~/Desktop/pcp/modeled_pcp.csv')
# outside the other functions, because this makes it CBP specific ....
cso_est = function(x){
#mm_out = x / 10
#inches = mm_out*0.03937
cso_est = 1567*x^2 - 46.955*x + 1309.8
cso_est = cso_est / 1e6
return(cso_est)
}
#calculate cso output on outp
#mod_all_pcp$cso = cso_est(mod_all_pcp$pcp) * mod_all_pcp$ac
date_labs = as.Date(row.names(mod_all_pcp))
mod_all_pcp$ag_labs = paste(mod_all_pcp$id, date_labs, sep = '-')
out1 = aggregate.data.frame(mod_all_pcp$pcp, by = list(mod_all_pcp$ag_labs), FUN = mean)
out2 = aggregate.data.frame(mod_all_pcp$ac, by = list(mod_all_pcp$ag_labs), FUN = sum)
out = merge(out1, out2, by = 'Group.1')
id = substr(out$Group.1, 1, 9)
dates = as.Date(substr(out$Group.1, 11, 20))
out[,1] = id
out$date = dates
colnames(out) = c('id', 'pcp', 'ac', 'date')
outp = out[order(out$id),]
year = format(outp$date, '%Y')
month = format(outp$date, '%m')
day = format(outp$date, '%d')
outp$year = as.numeric(year)
outp$month = as.numeric(month)
outp$day = as.numeric(day)
outp$date = NULL
## now cacluated cso,
outp$cso = cso_est(outp$pcp) * outp$ac
# write it separte,
write.csv(outp, '~/Desktop/output_pcp.csv', row.names = FALSE)
# end call
## then apply the cso equation and aggregation ...
##########################
#observing the results
cso_orig = read.csv('~/Desktop/cso.csv')
cso_orig$DC0021199 = as.character(cso_orig$DC0021199)
outp = outp[order(outp$year, outp$id),]
cso_orig = cso_orig[order(cso_orig$X2009.00, cso_orig$DC0021199),]
st = nrow(outp) - (nrow(cso_orig) - 365*64-64)
ed = nrow(outp)
head(outp[st:ed,])
tail(outp[st:ed,])
outp_c = outp[st:ed,]
cso_orig_c = cso_orig[-which(cso_orig$X2009.00 == 2015),]
cso_orig_c = cso_orig_c[64:nrow(cso_orig_c),]
head(cso_orig_c)
tail(cso_orig_c)
head(outp_c)
tail(outp_c)
our_version = outp_c$cso
tetra_tech = cso_orig_c$X0.00
dat = data.frame(tetra_tech, our_version)
plot_ecdf(dat)
NSE(our_version, tetra_tech)
library(ggplot2)
ggplot(dat, aes(x=our_version, y=tetra_tech)) +
geom_point(position=position_jitter(w=0.1,h=0)) +
xlab('out_version')
plot_ecdf <- function(dat, legend_names = colnames(dat), title = 'ECDFs', xlab = 'value', ylab = 'probability', out_type = 'display', file_name = 'ecdf-plot', out_dir = getwd()){
require(ggplot2)
require(reshape2)
ecdfs <- list()
for(i in 1:ncol(dat)){
ecdfs[[i]] = ecdf(dat[,i])
}
ecdf_frames <- list()
for(i in 1:length(ecdfs)){
now_dat <- data.frame(dat[,i], ecdfs[[i]](dat[,i]))
ecdf_frames[[i]] <- now_dat[order(now_dat[,1]),]
}
for(i in 1:length(ecdf_frames)){
colnames(ecdf_frames[[i]]) <- c('x', 'y')
}
melter <- data.frame(matrix(ncol = length(ecdf_frames) + 1, nrow = nrow(ecdf_frames[[1]])))
melter[,1] <- ecdf_frames[[1]][,2]
for(i in 1:length(ecdf_frames)){
melter[,i+1] <- ecdf_frames[[i]][,1]
}
colnames(melter) <- c('X1', legend_names)
data_long <- melt(melter, id='X1')
plot_ecdf <- ggplot(data = data_long,
aes(x = value, y = X1, colour = variable)) +
labs(title = title, x = xlab, y = ylab) +
geom_line()
if(out_type == 'display'){
plot(plot_ecdf)
print('Printed plot to display device')
}
if(out_type == 'file'){
invisible(plot_ecdf, file=paste0(paste(out_dir, file_name, sep = '/'), ".png"), plot=plot_qq)
print(paste('Saved plot to ', out_dir, sep = ''))
}
}