-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.c
382 lines (354 loc) · 10.5 KB
/
main.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
/**
* @file main.c
* @brief The main logic file.
*
* The matrix used in this program is modeled as a 2D array of fractions, with
* \f$n_{\mathrm{lines}}\times n_{\mathrm{col}}\f$ elements.
*
* The matrix is referenced in a line-column fashion (row-major). *I.e.* the
* value at `matrix[0][1]` is the element at the intersection of the first line
* and the second colum.
*/
#include "main.h"
#include <limits.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
/**
* @brief The file to read for the input matrix in case none is given as an
* argument.
*/
#define DEFAULT_FILENAME_IN "matrix.txt"
/**
* @brief Counts the occurences of a character in a string.
*
* @param[in] to_search The character to look for.
* @param[in] string The string to search in.
*
* @return The number of matches.
*/
int
count_char_in_string(const char to_search, const char *string)
{
int count = 0;
while (*string != '\0') {
if (*string == to_search) {
count++;
}
string++;
if (count == INT_MAX) {
/* The end of the string has been overshot, something
* went wrong */
return 0;
}
}
return count;
}
/**
* @brief Pretty-prints a matrix.
*
* Prints a 2D array of fractions on the standard output, formatted as a
* matrix.
*
* @param[in] matrix The matrix to print.
* @param[in] n_lines The number of lines of the matrix.
* @param[in] n_col The number of columns of the matrix.
*/
void
pp_matrix(fraction **const matrix, const int n_lines, const int n_col)
{
/*
* The matrix is pretty-printed with brackets represented either
* with parenthesises for single-line matrix or with a combination of
* slashes and vertical bars for multi-line matrixes.
*/
printf("\n");
for (int i = 0; i < n_lines; i++) {
if (i == 0) {
printf("⎛");
} else if (i == n_lines - 1) {
printf("⎝");
} else {
printf("⎜");
}
for (int j = 0; j < n_col; j++) {
printf("%c%u/%u",
fraction_sign_as_character(&matrix[i][j]),
matrix[i][j].numerator,
matrix[i][j].denominator);
if (j != n_col - 1) {
printf(" ");
}
}
if (i == 0) {
printf("⎞");
} else if (i == n_lines - 1) {
printf("⎠");
} else {
printf("⎟");
}
printf("\n");
}
}
/**
* @brief Finds the greatest fraction in matrix's column.
*
* @param[in] matrix The matrix to search the values in.
* @param[in] column The index of the column to search in.
* @param[in] n_lines The number of lines in the matrix.
*
* @return The line number of the column's greatest item.
*/
int
find_greatest_value_in_column(fraction **const matrix, const int column,
const int n_lines)
{
/* Start with the smallest possible value */
fraction current_max_val = {0, INT_MIN, 1};
int current_max_index = 0;
for (int i = 0; i < n_lines; i++) {
if (compare_fractions(&matrix[i][column], ¤t_max_val) ==
1) {
current_max_val = matrix[i][column];
current_max_index = i;
}
}
return current_max_index;
}
/**
* @brief Substract two matrix lines in places
*
* Piece-wise removes the value in line2 from line1, and stores the result in
* line1.
*
* @param[in, out] line1 Pointer to the first item of the line being substracted
* from.
* @param[in] line2 Pointer to the line being substracted.
* @param[in] n_col The number of columns in the matrix.
*/
void
substract_lines_in_place(fraction *const line1, fraction *const line2,
const int n_col)
{
for (int i = 0; i < n_col; i++) {
substract_fractions(line1 + i, line2 + i, &line1[i]);
}
}
/**
* @brief Multiplies the values in the line by a fraction.
*
* The fractions in the line are multiplied in place by the indicated fraction.
*
* @param[in, out] line Pointer to the first item of the line being multiplied.
* @param[in] factor The fraction to multiply the line by.
* @param[in] n_col The number of columns in the line.
*/
void
multiply_line_in_place(fraction *const line, const fraction factor,
const int n_col)
{
for (int i = 0; i < n_col; i++) {
multiply_fractions(line + i, &factor, &line[i]);
}
}
/**
* @brief Computes a row-echelon form of the matrix.
*
* Uses Gauss' method (row operations) to find a row-echelon form of the matrix.
* The matrix is modified in place.
*
* @param[in, out] matrix The matrix to manipulate.
* @param[in] n_lines The number of lines in the matrix.
* @param[in] n_col The number of columns in the matrix.
*/
void
triangularise(fraction **const matrix, const int n_lines, const int n_col)
{
/* For each step, the pivot is in position (i, i) */
for (int i = 0; i < n_lines; i++) {
/* Make the line with the biggest value of the
* column the pivot line */
int line_pivot =
find_greatest_value_in_column(matrix, i, n_lines);
if (line_pivot > i) {
/* Make the greatest value the pivot, for greater
* stability */
fraction *temp_line = matrix[i];
matrix[i] = matrix[line_pivot];
matrix[line_pivot] = temp_line;
}
fraction inverse_of_pivot = {0};
invert_fraction(&matrix[i][i], &inverse_of_pivot);
fraction *substracted_line = calloc(n_col, sizeof(fraction));
if (substracted_line == NULL) {
exit(EXIT_FAILURE);
}
for (int j = 0; j < n_lines; j++) {
if (j == i) {
/* This is the pivot */
continue;
}
/* Determine the factor */
fraction simplification_factor = {0};
multiply_fractions(&matrix[j][i], &inverse_of_pivot,
&simplification_factor);
/* Pre-multiply (a copy of!) the pivot's line */
substracted_line = memcpy(substracted_line, matrix[i],
n_col * sizeof(fraction));
multiply_line_in_place(substracted_line,
simplification_factor, n_col);
/* Substract the lines */
substract_lines_in_place(matrix[j], substracted_line,
n_col);
}
free(substracted_line);
}
}
/**
* @brief Reduces a matrix in upper-echelon form.
*
* Uses back-substitution to transform a matrix in row-echelon form to its
* reduced-row-echelon form.
*
* This function is currently unsued.
*
* @param[in,out] matrix The matrix to reduce.
* @param[in] n_lines The number of lines in the matrix.
* @param[in] n_col The number of columns in the matrix.
*/
void
diagonalise(fraction **const matrix, const int n_lines, const int n_col)
{
}
/**
* @brief Performs the gaussian elimination method on the matrix.
*
* Uses the gaussian elimitation method on an augmented matrix to find the
* solution of its corresponding system of linear equations. The matrix is
* modified in place.
*
* @param[in, out] matrix The matrix system to resolve.
* @param[in] n_lines The number of lines in the matrix.
* @param[in] n_col The number of columns in the matrix.
*/
void
gaussian_elimination(fraction **const matrix, const int n_lines,
const int n_col)
{
triangularise(matrix, n_lines, n_col);
diagonalise(matrix, n_lines, n_col);
}
/**
* @brief Prints the solution to the linear equation system after gaussian
* elimination.
*
* @param[in] matrix The matrix to print.
* @param[in] n_lines The number of lines in the matrix.
* @param[in] n_col The number of columns in the matrix.
*/
void
print_results(fraction **const matrix, const int n_lines, const int n_col)
{
for (int i = 0; i < n_lines; i++) {
fraction inverted_pivot = {0};
invert_fraction(&matrix[i][i], &inverted_pivot);
fraction var_i_val = {0};
multiply_fractions(&matrix[i][n_col - 1], &inverted_pivot,
&var_i_val);
float var_i_approx = var_i_val.numerator *
(var_i_val.negative ? -1.0 : 1.0) /
var_i_val.denominator;
printf("The value of the variable %d is: %g (%c%u/%u).\n",
i + 1, var_i_approx,
fraction_sign_as_character(&var_i_val),
var_i_val.numerator, var_i_val.denominator);
}
}
/**
* @brief The entry point of the program.
*
* Handles reading the input files and creating the matrix.
*
* @param[in] argc The number of arguments supplied to the program.
* @param[in] argv The array containing the arguments.
*
* @return The ending status of the program.
*/
int
main(const int argc, const char *const argv[])
{
int number_variables = 0;
fraction **values_matrix = {0};
const char *input_filename = "";
if (argc == 0) {
fprintf(stderr,
"ERROR: number of arguments should not be 0.\n");
exit(EXIT_FAILURE);
} else if (argc == 1) {
input_filename = DEFAULT_FILENAME_IN;
} else if (argc == 2) {
input_filename = argv[1];
} else {
fprintf(stderr, "ERROR: only 1 or 2 arguments expected.\n");
exit(EXIT_FAILURE);
}
FILE *input = fopen(input_filename, "r");
if (input == NULL) {
fprintf(stderr, "ERROR: could not open file %s.\n",
input_filename);
exit(EXIT_FAILURE);
}
fprintf(stderr, "Reading the file\n");
char string[256];
/* Read until a newline is reached */
fgets(string, 256, input);
rewind(input);
number_variables = count_char_in_string(' ', string);
if (number_variables == 0) {
fprintf(stderr,
"ERROR: the number of variables could not be read.\n");
exit(EXIT_FAILURE);
} else if (number_variables == 1) {
printf("This system only has one variable, it is already "
"solved.\n");
exit(EXIT_SUCCESS);
}
fprintf(stderr, "This system has %d variables.\n", number_variables);
values_matrix = calloc(number_variables, sizeof(fraction *));
if (values_matrix == NULL) {
fprintf(stderr, "ERROR: the memory was not allocated.\n");
exit(EXIT_FAILURE);
}
for (int i = 0; i < number_variables; i++) {
/* n variables + result */
values_matrix[i] =
calloc(number_variables + 1, sizeof(fraction));
if (values_matrix[i] == NULL) {
fprintf(stderr,
"ERROR: the memory was not allocated.\n");
exit(EXIT_FAILURE);
}
}
for (int i = 0; i < number_variables; i++) {
for (int j = 0; j < (number_variables + 1); j++) {
int input_coefficient = 0;
fscanf(input, "%d", &input_coefficient);
fraction_from_int(input_coefficient,
&values_matrix[i][j]);
}
}
fclose(input);
fprintf(stderr, "File closed\n");
printf("Initial matrix:");
pp_matrix(values_matrix, number_variables, number_variables + 1);
gaussian_elimination(values_matrix, number_variables,
number_variables + 1);
printf("\nFinal matrix:");
pp_matrix(values_matrix, number_variables, number_variables + 1);
print_results(values_matrix, number_variables, number_variables + 1);
for (int i = 0; i < number_variables; i++) {
free(values_matrix[i]);
}
free(values_matrix);
return EXIT_SUCCESS;
}