-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlane_detection.py
198 lines (153 loc) · 6.44 KB
/
lane_detection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import cv2
import numpy as np
import math
def detect_lane(frame):
edges = detect_edges(frame)
cropped_edges = region_of_interest(edges)
line_segments = detect_line_segments(cropped_edges)
lane_lines, _, _ = average_slope_intercept(frame, line_segments)
return lane_lines
def detect_edges(frame):
# filter for blue lane lines
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
# show_image("hsv", hsv)
lower_blue = np.array([0, 0, 0])
upper_blue = np.array([180, 255, 60])
mask = cv2.inRange(hsv, lower_blue, upper_blue)
# show_image("black mask", mask)
# detect edges
edges = cv2.Canny(mask, 200, 400)
return edges
def region_of_interest(edges):
height, width = edges.shape
mask = np.zeros_like(edges)
# only focus bottom half of the screen
polygon = np.array([[
(0, height * 0.55),
(width, height * 0.55),
(width, 0.9 * height),
(0, 0.9 * height),
]], np.int32)
cv2.fillPoly(mask, polygon, 255)
cropped_edges = cv2.bitwise_and(edges, mask)
return cropped_edges
def detect_line_segments(cropped_edges):
# tuning min_threshold, minLineLength, maxLineGap is a trial and error process by hand
rho = 1 # distance precision in pixel, i.e. 1 pixel
angle = np.pi / 180 # angular precision in radian, i.e. 1 degree
min_threshold = 10 # minimal of votes
line_segments = cv2.HoughLinesP(cropped_edges, rho, angle, min_threshold,
np.array([]), minLineLength=8, maxLineGap=4)
# print('line segments', line_segments)
return line_segments
def average_slope_intercept(frame, line_segments):
"""
This function combines line segments into one or two lane lines
If all line slopes are < 0: then we only have detected left lane
If all line slopes are > 0: then we only have detected right lane
"""
lane_lines = []
if line_segments is None:
# print('No line_segment segments detected')
return [], [], []
height, width, _ = frame.shape
# print(height, width)
left_fit = []
right_fit = []
boundary = 0.4
left_region_boundary = width * boundary # left lane line segment should be on left 2/3 of the screen
right_region_boundary = width * (1 - boundary) # right lane line segment should be on left 2/3 of the screen
# print(left_region_boundary, right_region_boundary)
for line_segment in line_segments:
for x1, y1, x2, y2 in line_segment:
if x1 == x2:
# print('skipping vertical line segment (slope=inf): %s' % line_segment)
continue
# print(x1, y1, x2, y2)
fit = np.polyfit((x1, x2), (y1, y2), 1)
slope = fit[0]
intercept = fit[1]
# if slope < 0:
if x1 < left_region_boundary and x2 < left_region_boundary:
left_fit.append((slope, intercept))
elif x1 > right_region_boundary and x2 > right_region_boundary:
right_fit.append((slope, intercept))
# print(left_fit)
# print(right_fit)
# print(left_fit)
# print("====")
# print(right_fit)
left_fit_average = np.average(left_fit, axis=0)
if len(left_fit) > 0:
lane_lines.append(make_points(frame, left_fit_average))
right_fit_average = np.average(right_fit, axis=0)
if len(right_fit) > 0:
lane_lines.append(make_points(frame, right_fit_average))
# print('lane lines: %s' % lane_lines) # [[[316, 720, 484, 432]], [[1009, 720, 718, 432]]]
left_lines = []
for left in left_fit:
left_lines.append(make_points(frame, left))
right_lines = []
for right in right_fit:
right_lines.append(make_points(frame, right))
return lane_lines, left_lines, right_lines
# def average_slope_intercept(frame, line_segments):
# """
# This function combines line segments into one or two lane lines
# If all line slopes are < 0: then we only have detected left lane
# If all line slopes are > 0: then we only have detected right lane
# """
# lane_lines = []
# if line_segments is None:
# print('No line_segment segments detected')
# return lane_lines
# height, width, _ = frame.shape
# print(height, width)
# left_fit = []
# right_fit = []
# boundary = 2/5
# left_region_boundary = width * (1 - boundary) # left lane line segment should be on left 2/3 of the screen
# right_region_boundary = width * boundary # right lane line segment should be on left 2/3 of the screen
# for line_segment in line_segments:
# for x1, y1, x2, y2 in line_segment:
# if x1 == x2:
# print('skipping vertical line segment (slope=inf): %s' % line_segment)
# continue
# fit = np.polyfit((x1, x2), (y1, y2), 1)
# slope = fit[0]
# intercept = fit[1]
# if slope < 0:
# if x1 < left_region_boundary and x2 < left_region_boundary:
# left_fit.append((slope, intercept))
# else:
# if x1 > right_region_boundary and x2 > right_region_boundary:
# right_fit.append((slope, intercept))
# left_fit_average = np.average(left_fit, axis=0)
# if len(left_fit) > 0:
# lane_lines.append(make_points(frame, left_fit_average))
# right_fit_average = np.average(right_fit, axis=0)
# if len(right_fit) > 0:
# lane_lines.append(make_points(frame, right_fit_average))
# print('lane lines: %s' % lane_lines) # [[[316, 720, 484, 432]], [[1009, 720, 718, 432]]]
# return lane_lines
def make_points(frame, line):
height, width, _ = frame.shape
slope, intercept = line
y1 = height # bottom of the frame
y2 = int(y1 * 1 / 2) # make points from middle of the frame down
if abs(slope - 0) < 0.001:
x1 = 2 * width
x2 = 2 * width
else:
# bound the coordinates within the frame
x1 = max(-width, min(2 * width, int((y1 - intercept) / slope)))
x2 = max(-width, min(2 * width, int((y2 - intercept) / slope)))
return [[x1, y1, x2, y2]]
def display_lines(frame, lines, line_color=(0, 255, 0), line_width=2):
line_image = np.zeros_like(frame)
if lines is not None:
for line in lines:
for x1, y1, x2, y2 in line:
cv2.line(line_image, (x1, y1), (x2, y2), line_color, line_width)
line_image = cv2.addWeighted(frame, 0.8, line_image, 1, 1)
return line_image