@@ -242,41 +242,69 @@ export class SqliteDatabaseAdapter extends DatabaseAdapter {
242
242
match_count : number ;
243
243
unique : boolean ;
244
244
} ) : Promise < Memory [ ] > {
245
- const queryParams = [
246
- new Float32Array ( params . embedding ) , // Ensure embedding is Float32Array
247
- params . tableName ,
248
- params . roomId ,
249
- params . match_count ,
245
+ // Build the query parameters array
246
+ const queryParams : any [ ] = [
247
+ params . embedding , // $1: embedding vector
248
+ params . tableName , // $2: table name
249
+ params . roomId , // $3: room ID
250
+ params . match_count , // $4: limit count
250
251
] ;
251
252
253
+ console . log ( "searchMemories" , params ) ;
254
+
255
+ // Start building the SQL query
252
256
let sql = `
253
- SELECT *, vec_distance_L2(embedding, ?) AS similarity
254
- FROM memories
255
- WHERE type = ?` ;
257
+ SELECT *,
258
+ embedding <-> $1 as similarity
259
+ FROM memories
260
+ WHERE type = $2
261
+ AND room_id = $3` ;
262
+
263
+ let paramCount = 3 ; // Track the current parameter count
256
264
257
265
if ( params . unique ) {
258
- sql += " AND `unique` = 1" ;
266
+ paramCount ++ ;
267
+ sql += ` AND unique = true` ;
259
268
}
260
269
261
270
if ( params . agentId ) {
262
- sql += " AND agentId = ?" ;
271
+ paramCount ++ ;
272
+ sql += ` AND agent_id = $${ paramCount } ` ;
263
273
queryParams . push ( params . agentId ) ;
264
274
}
265
275
266
- sql += ` ORDER BY similarity ASC LIMIT ?` ; // ASC for lower distance
267
- // Updated queryParams order matches the placeholders
276
+ // Add similarity threshold if specified
277
+ if ( params . match_threshold ) {
278
+ paramCount ++ ;
279
+ sql += ` AND embedding <-> $1 < $${ paramCount } ` ;
280
+ queryParams . push ( params . match_threshold ) ;
281
+ }
268
282
269
- const memories = this . db . prepare ( sql ) . all ( ...queryParams ) as ( Memory & {
270
- similarity : number ;
271
- } ) [ ] ;
272
- return memories . map ( ( memory ) => ( {
273
- ...memory ,
274
- createdAt :
275
- typeof memory . createdAt === "string"
276
- ? Date . parse ( memory . createdAt as string )
277
- : memory . createdAt ,
278
- content : JSON . parse ( memory . content as unknown as string ) ,
279
- } ) ) ;
283
+ // Order by similarity and limit results
284
+ sql += `
285
+ ORDER BY similarity ASC
286
+ LIMIT $4` ;
287
+
288
+ try {
289
+ // Use the pg pool or client to execute the query
290
+ const result = await this . db . query ( sql , queryParams ) ;
291
+
292
+ // Process and return the results
293
+ return result . rows . map ( ( row ) => ( {
294
+ ...row ,
295
+ createdAt :
296
+ typeof row . created_at === "string"
297
+ ? Date . parse ( row . created_at )
298
+ : row . created_at ,
299
+ content :
300
+ typeof row . content === "string"
301
+ ? JSON . parse ( row . content )
302
+ : row . content ,
303
+ } ) ) ;
304
+ } catch ( error ) {
305
+ console . error ( "Error executing vector similarity search:" , error ) ;
306
+ throw error ;
307
+ }
280
308
}
281
309
282
310
async searchMemoriesByEmbedding (
0 commit comments