forked from cornell-cs5220-f15/matmul-
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmatmul.c
257 lines (228 loc) · 7.05 KB
/
matmul.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
/*
Ideally, you won't need to change this file. You may want to change
a few settings to speed debugging runs, but remember to change back
to the original settings during final testing.
These hands have touched the file:
David Bindel
David Garmire
Jason Riedy
*/
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <float.h>
#include <math.h>
#include <omp.h>
#ifndef COMPILER
# define COMPILER "unknown"
#endif
#ifndef FLAGS
# define FLAGS "unknown"
#endif
/*
Your function _MUST_ have the following signature:
*/
extern const char* dgemm_desc;
extern void square_dgemm();
/*
We try to run enough iterations to get reasonable timings. The matrices
are multiplied at least MIN_RUNS times. If that doesn't take MIN_SECS
seconds, then we double the number of iterations and try again.
You may want to modify these to speed debugging...
*/
#define MIN_RUNS 4
/* #define MIN_SECS 1.0 */
#define MIN_SECS 0.25
/*
Note the strange sizes... You'll see some interesting effects
around some of the powers-of-two.
*/
const int test_sizes[] = {
31, 32, 96, 97, 127, 128, 129, 191, 192, 229,
#if defined(DEBUG_RUN)
# define MAX_SIZE 229u
#else
255, 256, 257, 319, 320, 321, 417, 479, 480, 511, 512, 639, 640,
767, 768, 769, 1023, 1024, 1025, 1525, 1526, 1527
# define MAX_SIZE 1527u
#endif
};
#define N_SIZES (sizeof (test_sizes) / sizeof (int))
/* --
* Initialize A to random numbers (A is MAX_SIZE * MAX_SIZE)
*/
void matrix_init(double *A)
{
for (int i = 0; i < MAX_SIZE*MAX_SIZE; ++i)
A[i] = drand48();
}
/* --
* Zero out C (which is MAX_SIZE * MAX_SIZE)
*/
void matrix_clear(double *C)
{
memset(C, 0, MAX_SIZE * MAX_SIZE * sizeof(double));
}
/* --
* Check that C = A*B to within roundoff error.
*
* We use the fact that dot products satisfy the error bound
*
* float(sum a_i * b_i) = sum a_i * b_i * (1 + delta_i)
*
* where delta_i <= n * epsilon. In order to check your matrix
* multiply, we compute each element in turn and make sure that
* your product is within three times the given error bound.
* We make it three times because there are three sources of
* error:
*
* - the roundoff error in your multiply
* - the roundoff error in our multiply
* - the roundoff error in computing the error bound
*
* That last source of error is not so significant, but that's a
* story for another day.
*/
void diff_dgemm(const int M, const double *A, const double *B, double *C)
{
FILE* fp_our = fopen("dump_our.txt", "w");
FILE* fp_ref = fopen("dump_ref.txt", "w");
FILE* fp_diff = fopen("dump_diff.txt", "w");
matrix_clear(C);
square_dgemm(M, A, B, C);
for (int i = 0; i < M; ++i) {
for (int j = 0; j < M; ++j) {
double dotprod = 0;
double errorbound = 0;
for (int k = 0; k < M; ++k) {
double prod = A[k*M + i] * B[j*M + k];
dotprod += prod;
errorbound += fabs(prod);
}
fprintf(fp_our, " %g", C[j*M+i]);
fprintf(fp_ref, " %g", dotprod);
fprintf(fp_diff, " % 0.0e", C[j*M+i]-dotprod);
}
fprintf(fp_our, "\n");
fprintf(fp_ref, "\n");
fprintf(fp_diff, "\n");
}
fclose(fp_diff);
fclose(fp_ref);
fclose(fp_our);
}
/* --
* Check that C = A*B to within roundoff error.
*
* We use the fact that dot products satisfy the error bound
*
* float(sum a_i * b_i) = sum a_i * b_i * (1 + delta_i)
*
* where delta_i <= n * epsilon. In order to check your matrix
* multiply, we compute each element in turn and make sure that
* your product is within three times the given error bound.
* We make it three times because there are three sources of
* error:
*
* - the roundoff error in your multiply
* - the roundoff error in our multiply
* - the roundoff error in computing the error bound
*
* That last source of error is not so significant, but that's a
* story for another day.
*/
void validate_dgemm(const int M, const double *A, const double *B, double *C)
{
matrix_clear(C);
square_dgemm(M, A, B, C);
for (int i = 0; i < M; ++i) {
for (int j = 0; j < M; ++j) {
double dotprod = 0;
double errorbound = 0;
for (int k = 0; k < M; ++k) {
double prod = A[k*M + i] * B[j*M + k];
dotprod += prod;
errorbound += fabs(prod);
}
errorbound *= (M * DBL_EPSILON);
double err = fabs(C[j*M + i] - dotprod);
if (err > 3*errorbound) {
fprintf(stderr, "Matrix multiply failed.\n");
fprintf(stderr, "C(%d,%d) should be %lg, was %lg\n", i, j,
dotprod, C[j*M + i]);
fprintf(stderr, "Error of %lg, acceptable limit %lg\n",
err, 3*errorbound);
diff_dgemm(M, A, B, C);
exit(-1);
}
}
}
}
/* --
* Compute a MFlop/s rate for C += A*B.
*
* The code runs the multiplication repeatedly in a loop MIN_RUNS times,
* then doubles the loop time if it did not take MIN_SECS to perform the
* run. This helps us get around the limits of timer resolution.
*/
double time_dgemm(const int M, const double *A, const double *B, double *C)
{
double secs = -1.0;
double mflops_sec;
int num_iterations = MIN_RUNS;
while (secs < MIN_SECS) {
matrix_clear(C);
double start = omp_get_wtime();
for (int i = 0; i < num_iterations; ++i) {
square_dgemm(M, A, B, C);
}
double finish = omp_get_wtime();
double mflops = 2.0 * num_iterations * M * M * M / 1.0e6;
secs = finish-start;
mflops_sec = mflops / secs;
num_iterations *= 2;
}
return mflops_sec;
}
int main(int argc, char** argv)
{
if (argc > 2) {
fprintf(stderr, "Usage: matmul [csv]\n");
exit(2);
}
FILE* fp;
if (argc == 1) {
const char* exename = argv[0];
const char* s = exename + strlen(exename);
for (; s != exename && *s != '-' && *s != '/'; --s);
char* fname = (char*) malloc(strlen(s) + strlen("timing.csv") + 1);
strcpy(fname, "timing");
strcat(fname, s);
strcat(fname, ".csv");
fp = fopen(fname, "w");
free(fname);
} else
fp = fopen(argv[1], "w");
if (!fp) {
fprintf(stderr, "Could not open '%s' for output\n", argv[1]);
exit(3);
}
double* A = (double*) malloc(MAX_SIZE * MAX_SIZE * sizeof(double));
double* B = (double*) malloc(MAX_SIZE * MAX_SIZE * sizeof(double));
double* C = (double*) malloc(MAX_SIZE * MAX_SIZE * sizeof(double));
matrix_init(A);
matrix_init(B);
printf("Compiler:\t%s\nOptions:\t%s\nDescription:\t%s\n\n",
COMPILER, FLAGS, dgemm_desc);
fprintf(fp, "size,mflop\n");
for (int i = 0; i < N_SIZES; ++i) {
const int M = test_sizes[i];
validate_dgemm(M, A, B, C);
fprintf(fp, "%u,%lg\n", M, time_dgemm(M, A, B, C));
}
free(C);
free(B);
free(A);
fclose(fp);
return 0;
}