-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathsq_elastic.py
221 lines (178 loc) · 8.53 KB
/
sq_elastic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
import argparse
import itertools
import os
import time
import dask.array as da
import numpy as np
import pandas as pd
from collections import deque
from elasticsearch import Elasticsearch
from elasticsearch.helpers import parallel_bulk, streaming_bulk, scan
from tqdm import tqdm
import utils
from dcg import dcg
from expman import Experiment
def crelu(x):
fw = da if isinstance(x, da.core.Array) else np
return fw.hstack([fw.maximum(x, 0), - fw.minimum(x, 0)])
def thr_sq(x, thr, s):
fw = da if isinstance(x, da.core.Array) else np
# threshold
x = fw.maximum(x - (1. / thr), 0)
x += (1. / thr) * (x > 0)
# quantize
x = fw.floor(s * x).astype(int)
return x
def surrogate_text(x, boost=False):
surrogate = []
x = utils.compute_if_dask(x, progress=False)
for term, freq in enumerate(x):
if freq:
if boost:
surrogate.append('{}^{}'.format(str(term), freq))
else:
try:
surrogate.extend([str(term)] * freq)
except:
print(freq, type(freq))
return ' '.join(surrogate)
def generate_index_actions(es, index_name, x, x_ids, thr, s, batch_size=1):
for i in range(0, x.shape[0], batch_size):
xb = x[i:i + batch_size]
xb = thr_sq(xb, thr, s)
xb = utils.compute_if_dask(xb, progress=False)
id_b = x_ids[i:i + batch_size]
for xi_id, xi in zip(id_b, xb):
# if es.exists(index_name, xi_id):
# tqdm.write(f'Skipping: {xi_id}')
# continue
yield {'_index': index_name, '_id': xi_id, 'repr': surrogate_text(xi)}
del xb
def main(args):
es = Elasticsearch(timeout=30, max_retries=10, retry_on_timeout=True)
dataset, q, x = utils.load_benchmark(args.dataset, args.features)
q = utils.load_features(q, chunks=(5000, 2048))
x = utils.load_features(x, chunks=(5000, 2048))
n_queries, n_samples = q.shape[0], x.shape[0]
if args.limit:
x = x[:args.limit]
if args.crelu:
q = crelu(q)
x = crelu(x)
params = vars(args)
ignore = ('output', 'force')
progress = tqdm(zip(args.threshold, args.sq_factor), total=len(args.threshold))
for thr, s in progress:
params['threshold'] = thr
params['sq_factor'] = s
progress.set_postfix({k: v for k, v in params.items() if k not in ignore})
exp = Experiment(params, root=args.output, ignore=ignore)
density, density_file = exp.require_csv(f'density.csv')
if 'query_density' not in density:
progress.write('Computing query density ...')
q_sq = thr_sq(q, thr, s)
q_density = (q_sq != 0).mean(axis=0)
q_density = utils.compute_if_dask(q_density)
density['query_density'] = q_density
density.to_csv(density_file, index=False)
if 'database_density' not in density:
progress.write('Computing database density ...')
x_sq = thr_sq(x, thr, s)
x_density = (x_sq != 0).mean(axis=0)
x_density = utils.compute_if_dask(x_density)
density['database_density'] = x_density
density.to_csv(density_file, index=False)
index_name = exp.name.lower()
if not es.indices.exists(index_name) or es.count(index=index_name)['count'] < n_samples or args.force:
# x_sq = thr_sq(x, thr, s)
x_ids, _ = dataset.images()
index_actions = generate_index_actions(es, index_name, x, x_ids, thr, s, 50)
# index_actions = tqdm(index_actions, total=n_samples)
progress.write(f'Indexing: {index_name}')
index_config = {
"mappings": {
"_source": {"enabled": False}, # do not store STR
"properties": {"repr": {"type": "text"}} # FULLTEXT
},
"settings": {
"index": {"number_of_shards": 1, "number_of_replicas": 0},
"analysis": {"analyzer": {"first": {"type": "whitespace"}}}
}
}
# es.indices.delete(index_name, ignore=(400, 404))
es.indices.create(index_name, index_config, ignore=400)
es.indices.put_settings({"index": {"refresh_interval": "-1", "number_of_replicas": 0}}, index_name)
indexing = parallel_bulk(es, index_actions, thread_count=4, chunk_size=150, max_chunk_bytes=2**26)
indexing = tqdm(indexing, total=n_samples)
start = time.time()
deque(indexing, maxlen=0)
add_time = time.time() - start
progress.write(f'Index time: {add_time}')
es.indices.put_settings({"index": {"refresh_interval": "1s"}}, index_name)
es.indices.refresh()
index_stats_file = exp.path_to('index_stats.csv')
index_stats = pd.DataFrame({'add_time': add_time}, index=[0])
index_stats.to_csv(index_stats_file, index=False)
metrics, metrics_file = exp.require_csv(f'metrics.csv')
scores = None
scores_file = exp.path_to(f'scores.h5')
if not os.path.exists(scores_file):
progress.write('Computing scores...')
xid2idx = {k: i for i, k in enumerate(dataset.images()[0])}
q_sq = thr_sq(q, thr, s)
q_sq = utils.compute_if_dask(q_sq, progress=False)
scores = np.zeros((n_queries, n_samples), dtype=np.float32)
query_times = []
for i, qi in enumerate(tqdm(q_sq)):
query = {
"query": {"query_string": {"default_field": "repr", "query": surrogate_text(qi, boost=True)}},
# "from": 0, "size": n_samples
}
start = time.time()
for hit in tqdm(scan(es, query, index=index_name, preserve_order=True), total=n_samples):
j = xid2idx[hit['_id']]
scores[i, j] = hit['_score']
query_times.append(time.time() - start)
metrics['query_time'] = query_times
metrics.to_csv(metrics_file, index=False)
progress.write(f'Query time: {metrics.query_time.sum()}')
utils.save_as_hdf5(scores, scores_file, progress=True)
if 'ap' not in metrics:
if scores is None:
progress.write('Loading scores...')
scores = utils.load_features(scores_file)[...]
progress.write('Computing mAP...')
metrics['ap'] = dataset.score(scores, reduction=False, progress=True)
metrics.to_csv(metrics_file, index=False)
progress.write(f'mAP: {metrics.ap.mean()}')
if 'ndcg' not in metrics:
dataset._load() # TODO in y_true getter
if scores is None:
progress.write('Loading scores...')
scores = utils.load_features(scores_file)[...]
progress.write('Computing nDCG...')
metrics['ndcg'] = dcg(dataset.y_true, scores, normalized=True)
metrics.to_csv(metrics_file, index=False)
progress.write(f'nDCG: {metrics.ndcg.mean()}')
if __name__ == '__main__':
thrs = (range(2, 10), # 2 to 10 excl.
range(10, 50, 2), # 10 to 50 excl. step 2
range(50, 100, 10), # 50 to 100 excl. step 10
range(100, 1000, 100), # 100 to 1000 excl. step 100
range(1000, 5001, 1000)) # 1000 to 5000 step 1000
thrs = list(itertools.chain.from_iterable(thrs))
sq_f = thrs
benchmarks = ('oxford', 'paris', 'holidays', 'oxford+flickr100k', 'holidays+mirflickr1m')
parser = argparse.ArgumentParser(description='Scalar Quantization scoring')
parser.add_argument('dataset', choices=benchmarks, help='Benchmark')
parser.add_argument('features', help='Features dirname')
parser.add_argument('output', help='Output dir for results')
parser.add_argument('-f', '--force', default=False, action='store_true', help='Force indexing')
parser.add_argument('-l', '--limit', type=int, default=0, help='Distractor set limit (0 = no limit)')
parser.add_argument('-c', '--crelu', action='store_true', default=False, help='Use CReLU')
parser.add_argument('-t', '--threshold', type=int, nargs='+', default=thrs,
help='Thresholding factor (multiple values accepted)')
parser.add_argument('-q', '--sq-factor', type=int, nargs='+', default=sq_f,
help='Scalar quantization factor (multiple values accepted)')
args = parser.parse_args()
main(args)